首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
性质 1 如图 1,过点Q( -a ,0 ) (a >0 )的直线l与抛物线 y2 =2 px( p >0 )相交于M、N两点 ,H为 (a ,0 ) ,则∠MHQ =∠NHx .证明 设M (x1,y1) ,N(x2 ,y2 ) ,直线l:y=k(x a)  (k≠ 0 ) ,与抛物线方程 y2 =2 px联立 ,消去 y得k2 x2 ( 2ak2 - 2 p)x k2 a2 =0 .  由韦达定理知 x1x2 =a2 .又M、N在抛物线上 ,且在x轴的同侧 ,∴y1y2 =4 p2 x1x2 =2ap ,x1=y212 p,x2 =y222 p.由x1≠x2 ,知x1≠a ,x2 ≠a ,故直线MH、NH的斜率存在 .又kHM kNH =y1x1-a y2…  相似文献   

2.
文 [1]证明了有心圆锥曲线任一弦的斜率和弦中点与椭圆中心连线的斜率 (均存在且不为零 )之积为一定值 ,受此启发 ,本文给出抛物线的有关斜率的一对定值 ,并举例说明其在解题中的应用 ,聊作文[1]的补缀 .定理 1 设M (x0 ,y0 )是抛物线 y2 =2 px (p>0 )上的定点 ,A、B是抛物线上的两动点 ,若kMA·kMB =t (t≠ 0 ) ,则直线AB过定点x0 - 2pt ,- y0 .证明 设A(x1 ,y1 )、B(x2 ,y2 ) ,则有y21 =2 px1 ( 1) ,y22 =2 px2 ( 2 ) ,y20 =2 px0 ( 3) .( 1) - ( 2 )得  ( y1 y2 ) ( y1 - y2 ) =2 p(x1…  相似文献   

3.
有关圆锥曲线弦的二端点与原点连线的斜率问题 ,涉及解析几何中许多重要的知识点 ,在各种考试的试题中经常出现 .若用常规方法解决 ,运算量大、过程冗繁 .本文通过实例介绍这类问题的一种简捷解法 .例 1  (1993年上海市高考试题 )抛物线 y=- 12 x2 与过点M(0 ,- 1)的直线l相交于A、B两点 ,O为坐标原点 .若直线OA与OB的斜率之和为1,求直线l的方程 .解 设直线l的方程为 y =kx- 1,即 1=kx-y .代入抛物线方程 2 y· 1+x2 =0得    2y(kx- y) +x2 =0 .整理后两边同时除以x2 ,有   2 (yx) 2 - 2k· (yx) - …  相似文献   

4.
《中学数学杂志》2 0 0 1年第 6期《曲线的运动与变换》一文中有一个结论是 :“函数y =f(x)定义在R上 ,则函数 y =f(ωx A)与y=f(B-ωx)的图象关于直线x =B-A2 对称” .我认为 ,函数 y= f(ωx A)与 y =f(B -ωx)的图象关于直线x= B-A2ω 对称 .事实上 ,若点M(x0 ,y0 )是函数 y =f(ωx A)图象上任意一点 ,则 y0 =f(ωx0 A) .设点M关于直线x =B-A2ω 的对称点为N(x′,y′) ,则有x0 x′2 =B-A2ωy0 =y′ x′=B -Aω -x0 ,y′=y0因为 f(B -ωx′) =f[B-ω(B-Aω -x0 ) ] =…  相似文献   

5.
性质 1 圆 (x -h) 2 (y-k) 2 =r2 中 ,以P0 (x0 ,y0 ) (x0 ≠h或y0 ≠k)为中点弦的所在的直线方程为(x0 -h) (x-x0 ) (y0 -k) (y- y0 ) =0 .当h =k=0时方程变为x0 (x -x0 ) y0 (y - y0 ) =0 .证明 设弦所在直线与圆交于A(x1,y1) ,B(x2 ,y2 ) ,所以有(x1-h) 2 (y1-k) 2 =r2 ,(1)(x2 -h) 2 (y2 -k) 2 =r2 . (2 )(2 ) - (1)得   (x2 -x1) (x1 x2 - 2h)   =- (y2 - y1) (y1 y2 - 2k) .当x2 ≠x1时 ,可变为x1 x2 - 2hy1 y2 - 2k =- y2 - y1x2 -x1.又P0 (x0 ,y0…  相似文献   

6.
设P(x0 ,y0 )为任一点 ,直线l的方程为Ax By C =0 (A2 B2 ≠ 0 ) ,我们来求P到l的距离d .设Q(x1,y1)为P在l上的射影 ,当AB≠ 0 ,且P不在l上时 ,有d =|PQ|=(x1-x0 ) 2 (y1-y0 ) 2=(x1-x0 ) 2 [1 (y1-y0x1-x0) 2 ]=(x1-x0 ) 2 (1 B2  相似文献   

7.
本文从一个定理的证明出发 ,利用数学知识探讨椭圆的光学性质 .定理 :圆锥曲线E :mx2 +ny2 =1(m >0 ,n >0或mn <0 ) ,不平行于对称轴的任一弦AB与过AB中点M的直线OM的斜率之积为常数 - mn .证明 :设A(x1 ,y1 )、B(x2 ,y2 )、M (x0 ,y0 ) .由 mx21 +ny21 =1,mx22 +ny22 =1,两式相减 ,得m(x1 +x2 ) (x1 -x2 ) +n(y1 +y2 ) (y1 -y2 ) =0 .因x1 +x2 =2x0 ,y1 + y2 =2 y0 ,故mx0 (x1 -x2 ) +ny0 ( y1 - y2 ) =0 .又∵ x1 -x2 ≠ 0 ,x0 ≠ 0 ,∴  y1 - y2x1 -x2·y0x0=- …  相似文献   

8.
函数是初中数学的重要内容 ,也是中考命题的热点 ,特别是两个函数的综合问题更显重要 .现结合中考试题进行分析 ,供参考 .图 1例 1 如图 1,双曲线y =kx与直线y =-x -k相交于A ,过A作x轴的垂线AB (B是垂足 ) .如果S△ABO=2 ,求 :( 1)两个函数的解析式 ;( 2 )S△ABC.( 1998年甘肃省中考题 )解  ( 1)由S△ABO=2知 ,|k|=|xy|=4.又k <0 ,∴ k =-4 .∴ 双曲线的解析式为y =-4x,直线的解析式为y =-x +4.( 2 )由方程组 y =-4x,y =-x +4,得A( 2 -2 2 ,2 +2 2 ) .又C( 4 ,0 ) ,B( 2 -2 2 ,0 ) ,∴ BC …  相似文献   

9.
人教版高级中学课本《平面解析几何》全一册 (必修 )第一章第 1 .1 0节“点到直线的距离”在开头这样写道 :“已知点P(x0 ,y0 )和直线l:Ax By C =0 ,怎样求点P到直线l的距离呢 ?根据定义 ,点P到直线l的距离是点P到直线l的垂线段的长 .设点P到直线l的垂线为l′,垂足为Q .由l⊥l′可知l′的斜率为 BA(A≠ 0 ) ,根据点斜式可写出l′的方程 ,并由l与l′的方程求出点Q的坐标 ;由此可根据两点距离公式求出 |PQ|,这就是点P到直线l的距离 .这个方法虽然思路自然 ,但是运算很繁 .”接着一转笔锋 ,用平面几何和三…  相似文献   

10.
已知点P(x1,y1)不在直线l:Ax By C =0 (B≠ 0 )上 ,若P在l的上方 ,则B(Ax1 By1 C)>0 ;若P在l的下方 ,则B(Ax1 By1 C) <0 .1 证明 设P0 (x1,y0 )为l上的一点 ,则Ax1 By0 C=0 ,所以By0 =- (Ax1 C) ,有B2 y0 =-B(Ax1 C) .  若P在l的上方 ,则y1>y0 ,∴B2 y1>B2 y0 ,即   B2 y1>-B(Ax1 C) ,得B(Ax1 By1 C) >0 ;  若P在l的下方 ,则 y1<y0 ,同上可得B(Ax1 By1 C) <0 .2 应用例 1 已知直线l :ax y 2 =0 ,点 P( - 2 ,1) ,Q( 3,2 ) ,且P、Q位于直…  相似文献   

11.
在学习解析几何时,常常会遇到直线与线段相交时求参数范围的问题,这里先介绍一个简单结论,从而简捷地解决此类问题.定理 若直线l:Ax By C=0(A2 B2≠0)与P1(x1,y1),P2(x2,y2)为端点的线段相交,则(Ax1 By1 C)(Ax2 By2 C)≤0.证 设直线l与线段P1P2相交于点P(x,y),不妨设P不重合于P2,点P内分线段P1P2—的比为λ,则λ≥0,由定比分点坐标公式,得x=x1 λx21 λ, y=y1 λy21 λ.∵ 点P(x,y)在直线l上,∴ A·x1 λx21 λ B·y1 λy21 λ C=0,整理,得 Ax1 By1 C=-λ(Ax2 By2 C).…  相似文献   

12.
在抛物线与直线的关系中 ,过抛物线焦点的直线与抛物线的关系尤为重要 ,这是因为在这一关系中具有一些很有用的性质 ,这些性质常常是高考命题的切入点 .本文对此作一些探讨 .不妨设抛物线方程为 y2 =2 px( p>0 ) ,则焦点F p2 ,0 ,准线l的方程 :x=-p2 .过焦点F的直线交抛物线于A(x1 ,y1 )、B(x2 ,y2 )两点 ,又作AA1 ⊥l,BB1 ⊥l,垂足分别为A1 、B1 .AB⊥x轴时 ,x1 =x2 =p2 ,A p2 ,p ,B p2 ,-p ,此时弦AB叫抛物线的通径 ,它的长|AB| =2 p .AB与x轴不垂直也不平行时 ,设弦AB所在直线的斜率为…  相似文献   

13.
在新编高中数学教材中增加了向量一章后 ,向量的坐标可用其起点、终点的坐标来表示 ,使向量与平面解析几何有了必然的联系 ,特别是两向量垂直与平行的充要条件 ,给求曲线的轨迹方程带来了极大的方便 ,使解题过程由复杂而变为简单 ,下面举几例来说明向量在求曲线方程时的简单应用 :例 1 过定点M ( 2 ,1)引动直线l,l与x轴、y轴分别交于A、B两点 ,求线段AB中点P的轨迹方程 .分析 以往解析几何中 ,设过点 ( 2 ,1)的直线的斜率为k ,由点斜式得直线l的方程为 :y- 1=k(x - 2 ) ,然后分别令x=0 ,y=0 ,求出A、B两点的坐标 ,再设…  相似文献   

14.
在平面解析几何中 ,关于平行直线有如下结论 :设有两条平行直线l1:Ax By C1=0和l2 :Ax By C2 =0 ,则到这两条直线距离相等的直线方程为Ax By C1 C22 =0 .证明 设P(x ,y)是所求直线上任一点 ,由题设以及点到直线的距离公式 ,有|Ax By C1|A2 B2 =|Ax By C2 |A2 B2 .  因为l1与l2 在点P的两侧 ,所以有Ax By C1=- (Ax By C2 ) ,即 Ax By C1 C22 =0为所求的直线方程 .运用该结论可以得到一种求直线对称点的新方法 .例 已知A(- 2 ,4 ) ,求它关于直线l:2x- y -1=0的对…  相似文献   

15.
笔者在研究抛物线的有关问题时 ,意外地得到了抛物线切线的几个性质及其判定方法 ,现以定理的形式介绍如下 :定理 1 P是抛物线 y2 =2 px上一动点 ,M是点P在准线上的射影 ,F为焦点 .过P点的直线l是该抛物线切线的充要条件是直线l垂直于直线MF .     图 1说明 设P点坐标为 (x0 ,y0 ) ,则M(-p2 ,y0 ) ,F(p2 ,0 ) ,当P点为抛物线顶点 ,即 y0=0时 ,定理显然成立 ;当P点不为抛物线顶点 ,即 y0 ≠ 0时 ,充分性 由题设知直线MF的斜率   kMF =y0- p2 - p2=- y0p.因直线l⊥MF ,且P∈l,由直线方程的…  相似文献   

16.
第 一 试一、选择题 (每小题 6分 ,共 3 6分 )1.已知x、y是两个不等的正数 ,则A =x2 +y22- x +y2 ,B =x +y2 -xy ,C =xy - 21x + 1y的大小顺序是 (   ) .(A)A >B >C     (B)A >C >B(C)B >A >C  (D)B >C >A2 .函数y =f(x)与y =g(x)有相同的定义域 ,对定义域中任何x ,有f(x) +f(-x) =0 ,g(x)g(-x)= 1,且当x≠ 0时 ,g(x)≠ 1.则F(x) =2f(x)g(x) - 1+f(x)是 (   ) .(A)奇函数  (B)偶函数(C)既是奇函数又是偶函数(D)非奇非偶函数3 .已知a、b为非零常数 .若M =a…  相似文献   

17.
在初中阶段 ,同学们就已经熟悉弦长公式 ,这一公式在解析几何中应用十分广泛 .运用这一公式在求解直线被圆锥曲线所截的弦长时十分方便 .其实灵活运用弦长公式也可以简便地求解其它有关直线问题 .下面就是有关的几个例子 .一、弦长公式若点P(x1 ,y2 )、Q(x2 ,y2 )在直线l:y =kx +b上 ,则有|PQ| =( 1 +k2 ) (x1 -x2 ) 2=1 +k2 |x1 -x2 | .当k≠ 0时 ,|PQ|=1 +1k2 |y1 -y2 | .二、几个例子例 1 已知点A( 1 ,1 ) ,B( 2 ,3 ) ,将线段AB绕点A按顺时针方向旋转 90°,点B与点C重合 ,求点C坐标 .分析 由…  相似文献   

18.
函数y =kx +b(k≠ 0 )的图像是一条不平行于坐标轴的直线 ,它与坐标轴围成一个三角形 .当函数的解析式形如y =±x +b、y =± 3x +b、y =± 33x +b时 ,直线与坐标轴围成一个特殊的直角三角形 .在解决涉及一次函数的图像问题时 ,注意k值的特殊性 ,抓住特殊直角三角形的性质 ,有益于启迪思维 ,找到解决问题的突破口 .图 1例 1 已知直线y =- 33x + 1和x轴、y轴分别交于点A、B ,以线段AB为边在第一象限内作等边△ABC .点Pa ,12 为第一象限内的一点 ,且S△ABP =S△ABC.求a的值 .解析 1 此题可使用平面几何…  相似文献   

19.
一、选择题 :本大题共 12小题 ,每小题 5分 ,共 60分 .在每小题给出的四个选项中 ,只有一项是符合题目要求的 .( 1)集合M ={1,2 ,3 ,4 ,5}的子集个数是 (   ) .A .32  B .31  C .16  D .15( 2 )函数f(x) =ax(a >0且a≠ 1)对于任意的实数x ,y都有 (   ) .A .f(xy) =f(x) f( y)B .f(xy) =f(x) f( y)C .f(x y) =f(x) f(y)D .f(x y) =f(x) f(y)( 3)limn→∞Cn2nCn 1 2n 2=(   ) .A .0  B .2  C .12   D .14( 4 )函数y =- 1-x (x≤ 1)的反函数是(   )…  相似文献   

20.
问题 :设A1B2 ≠A2 B1,若x、y满足 :m1≤F1(x ,y) =A1x +B1y≤M1,m2 ≤F2 (x ,y) =A2 x +B2 y≤M2 ,求函数F(x ,y) =Ax +By的取值范围 .对上述问题的求解 ,要先找出F(x ,y)与F1(x ,y)及F2 (x ,y)之间的线性关系 ,然后利用不等式的性质加以解决 .事实上 ,设F(x ,y) =λ1F1(x ,y) +λ2 F2 (x ,y) (λ1、λ2 为常数 ) ,也即是 :Ax +By =(λ1A1+λ2 A2 )x + (λ1B1+λ2 B2 ) y .∴  λ1A1+λ2 A2 =A ,λ1B1+λ2 B2 =B .解得 :λ1=B2 A -A2 BA1B2 -A2 B1,λ2 =A1B …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号