首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the jets and detonation gaseous products are separated by sharp interfaces,the traditional smoothed particle hydrodynamics (SPH) method is difficult to avoid the computational instability at interfaces.The multi-phase SPH (MSPH) method was applied to improving the stability,which smoothes the particle density and makes pressure continuous at interfaces.Numerical examples of jet forming process were used to test capability of the MSPH method.The results show that the method remains algorithm stability for large density gradient between the jets and gaseous products and has potential application to both the explosion and the jet problems.The effect of initiation ways of the shaped charge was discussed as well.  相似文献   

2.
用CERN-Sp(?)S对撞机产生5000 000个高能p(?)碰撞事件并用喷注的圆锥判定法判定事件中的喷注.并且对不同喷注数的百分比、累积变量、喷注内部粒子数相对于坐标Y,Pt,(?)的区间分布以及一维二阶阶乘矩的饱和现象等性质进行了研究.最后用三维自仿射分析得到了三维二阶阶乘矩的反常标度性.  相似文献   

3.
The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water. The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect.  相似文献   

4.
The normal hypervelocity impact of an Al-thin plate by an Al-sphere was numerically simulated by using the adaptive smoothed particle hydrodynamics (ASPH) method. In this method, the isotropic smoothing algorithm of standard SPH is replaced with anisotropic smoothing involving ellipsoidal kernels whose axes evolve automatically to follow the mean particle spacing as it varies in time, space, and direction around each particle. Using the ASPH, the anisotropic volume changes under strong shock condition are captured more accurately and clearly. The sophisticated features of meshless and Lagrangian nature inherent in the SPH method are kept for treating large deformations, large inhomogeneities and tracing free surfaces in the extremely transient impact process. A two-dimensional ASPH program is coded with C . The developed hydrocode is examined for example problems of hypervelocity impacts of solid materials. The results obtained from the numerical simulation are compared with available experimental ones. Good agreement is observed.  相似文献   

5.
Rocks are heterogeneous from the point of microstructure which is of significance to their dynamic failure behavior. Both the compressive and tensile strength of rock-like materials is regarded different from the static strength. The present study adopts smoothed particle hydrodynamics (SPH) which is a virtual particle based meshfree method to investigate strain rate effect for heterogeneous brittle materials. The SPH method is capable of simulating rock fracture, free of the mesh constraint of the traditional FEM and FDM models. A pressure dependent J-H constitutive model involving heterogeneity is employed in the numerical modeling. The results show the compressive strength increases with the increase of strain rate as well as the tensile strength, which is important to the engineering design.  相似文献   

6.
7.
聚能射流形成的数值模拟,涉及到大变形、高应变率以及材料的破坏,传统的拉格朗日或欧拉方法在解决该问题均有很大的局限性,先后发展了网格重分、ALE、SPH等方法,以及界面处理技术,各有所长,但尚未完全解决,而在实际工作中,切合实际的药型罩介质本构关系则是聚能射流数值模拟的关键,高效并行计算与可视化则是聚能射流数值模拟的必由之路,并阐述了聚能射流数值模拟的发展趋势.  相似文献   

8.
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy.  相似文献   

9.
A droplet undergoes spreading,rebounding or splashing when it impacts solid boundary,which is a typical phenomenon of free surface flow that exists widely in modern industry.Smoothed particle hydrodynamics(SPH)method is applied to numerically study the dynamical behaviors of the droplet impacting solid boundary,and both the spreading and rebounding phenomena of the droplet are reproduced in the simulation.The droplet deformation,flow fields and pressure fields inside the droplet at different moments are analyzed.Two important factors,the initial velocity and diameter,are discussed in determining the maximum spreading factor,revealing that the maximum spreading factor increases with the increase of the impact velocity and droplet diameter respectively.  相似文献   

10.
HeatTransferofanArayofRoundImpingingJetswithOneSidedExhaustoftheSpentAirSongYijun(宋益军)ChenYongyuan(程永元)CaiSong(蔡崧)(Thermoene...  相似文献   

11.
Gaining a thorough understanding of the theoretical principles of rock breaking with a disc cutter is a critical issue in tunnel boring machine (TBM) technology. To fully consider the complexity and importance of the basic principles of rock breaking during tunnel excavation, in this paper we use a new method, the smooth particle hydrodynamics (SPH), to study the rock-breaking mechanism and verify its accuracy and feasibility. Using the SPH method, we induce the rock fragmentation process with two cutters in synchronous and sequential orders. The results show that when the cutters act on rock sequentially, the second indentation influences the crack evolution of the first indentation. With increased cutter spacing, the second crack gradually becomes independent of the first crack. Under synchronous action of the two cutters, a bursiform nucleus is generated beneath the cutters and the area of the nucleus increases with increased cutter spacing. Whether the cutters act on the rock sequentially or synchronously, we found the optimum cutter spacing of our chosen rock type to be 60 mm. Our analyses results show that the efficiency of sequential rock cutting is superior to synchronous cutting, both with respect to crack evolution and cutter force.  相似文献   

12.
Gas-solid two-phase turbulent plane jet is applied to many natural situations and in engineering systems. To predict the particle dispersion in the gas jet is of great importance in industrial applications and in the designing of engineering systems. A large eddy simulation of the two-phase plane jet was conducted to investigate the particle dispersion patterns. The particles with Stokes numbers equal to 0.0028, 0.3, 2.5, 28 (corresponding to particle diameter 1 μm, 10μm, 30μm, 100μm, respectively) inRe=11 300 gas flow were studied. The simulation results of gas phase motion agreed well with previous experimental results. And the simulation results of the solid particles motion showed that particles with different Stokes number have different spatial dispersion; and that particles with intermediate Stokes number have the largest dispersion ratio. Project (No. G19990222) supported by the Special Funds for Major State Basic Research of China  相似文献   

13.
Suspension plasma spraying (SPS) can be utilized to manufacture finely structured coatings. In this process, liquid suspended with micro- or nano-sized solid particles is injected into a plasma jet. It involves droplet injection, solvent evaporation, and discharge, acceleration, heating, and melting of the solid particles. The high-speed and high-temperature particles finally impact on the substrate wall, to form a thin layer coating. In this study, a comprehensive numerical model was developed to simulate the dynamic behaviors of the suspension droplets and the solid particles, as well as the interactions between them and the plasma gas. The plasma gas was treated as compressible, multi-component, turbulent jet flow, using Navier-Stokes equations solved by the Eulerian method. The droplets and solid particles were treated as discrete Lagrangian entities, being tracked through the spray process. The drag force, Saffman lift force, and Brownian force were taken into account for the aerodynamic drag force, aerodynamic lift force, and random fluctuation force imposed on the particles. Spatial distributions of the micro- and nano-sized particles are given in this paper and their motion histories were observed. The key parameters of spray distribution, including particle size and axial spray distance, were also analyzed. The critical size of particle that follows well with the plasma jet was deduced for the specified operating conditions. Results show that in the downstream, the substrate influences the flow field structure and the particle characteristics. The appropriate spray distances were obtained for different micro- and nano-sized particles.  相似文献   

14.
使用有限分析/颗粒数值方法模拟壁面射流两相流,并将模拟结果与试验数据进行比较,以检验该方法在实际应用中的效果.气相采用标准k—e模型,有限体积SIMPLE方法;颗粒相采用“扩维模型”和“统一色噪声模型”的颗粒速度PDF模型的有限分析方法/颗粒方法,以及使用颗粒应力模型轨道方法(PRST)进行对比计算.  相似文献   

15.
A circular jet has broad and important applications in practical engineering. Most research in this area has focused on a free jet, a wall jet or a vertical jet in a bounded domain. In this study, the mean velocities of circular offset jets were studied for four jet exit Froude numbers (Fr), three offset heights (S) (S/d=1, 2, 3) and three submergence ratios (ht/S) (surface jet, mixed jet, and submerged jet) in a bounded basin. Based on the results, we propose a velocity decay formula for a circular jet. The lateral velocity spread was more consistent with Gaussian and Cauchy–Lorentz distributions than the vertical velocity. Moreover, Fr had little effect on the decay of the mean velocity for a circular jet when Re>1×104. The lateral and vertical spreads showed a quadratic relationship with the streamwise distance for different values of Fr at X/d<10. The positions of maximum mean velocity decay were independent of Fr and S/d when X/d<10. The spread rate was more uniform in the lateral direction than that in the vertical direction in a certain region for different S/d and ht/S. Therefore, the decay, spread, and maximum velocity position of the mean velocity for a circular offset jet can remain stable under different values of Fr, offset height, and submergence ratio.  相似文献   

16.
This study investigated the use of the Task Demonstration Model (TDM) of group instruction for students with severe or moderate retardation. This model and the Standard Prompting Hierarchy (SPH) were tested against each other (and baseline) across three teachers and groups of students. Results on teacher variables showed that demands and praise were roughly equivalent for both procedures, but prompts were 12 times higher in SPH than in TDM. Data on student variables showed task engagement to be the same for SPH and TDM, percent correct to be 10% higher in TDM, but rate correct to be twice as much in TDM as in SPH.  相似文献   

17.
There are some curved interfaces in ocean acoustic waveguides. To compute wave propagation along the range with some marching methods, a flattening of the internal interfaces and a transforming equation are needed. In this paper a local or-thogonal coordinate transform and an equation transformation are constructed to flatten interfaces and change the Helmholtz equation as a solvable form. For a waveguide with a flat top, a flat bottom and n curved interfaces, the coefficients of the trans-formed Helmholtz equation are given in a closed formulation which can be thought of as an extension of the formal work related to the equation transformation with two curved internal interfaces. In the transformed horizontally stratified waveguide, the one-way reformulation based on the Dirichlet-to-Neumann (DtN) map is then used to reduce the boundary value problem to an initial value problem. Numerical implementation of the resulting operator Riccati equation uses a large range step method to discretize the range variable and a truncated local eigenfunction expansion to approximate the operators. This method is particularly useful for solving long range wave propagation problems in slowly varying waveguides. Furthermore, the method can also be applied to wave propagation problems in acoustic waveguides associated with varied density.  相似文献   

18.
There are some curved interfaces in ocean acoustic waveguides. To compute wave propagation along the range with some marching methods, a flattening of the internal interfaces and a transforming equation are needed. In this paper a local orthogonal coordinate transform and an equation transformation are constructed to flatten interfaces and change the Helmholtz equation as a solvable form. For a waveguide with a flat top, a fiat bottom and n curved interfaces, the coefficients of the transformed Helmholtz equation are given in a closed formulation which can be thought of as an extension of the formal work related to the equation transformation with two curved internal interfaces. In the transformed horizontally stratified waveguide, the one-way reformulation based on the Dirichlet-to-Neumann (DtN) map is then used to reduce the boundary value problem to an initial value problem. Numerical implementation of the resulting operator Riccati equation uses a large range step method to discretize the range variable and a truncated local eigenfunction expansion to approximate the operators. This method is particularly useful for solving long range wave propagation problems in slowly varying waveguides. Furthermore, the method can also be applied to wave propagation problems in acoustic waveguides associated with varied density.  相似文献   

19.
超细白炭黑表面改性研究   总被引:1,自引:0,他引:1  
研究改性剂的种类、用量对白炭黑产品的粒度、白度、松容重、吸油率、比表面积、孔体积及颗粒形貌的影响.样品的扫描电子显微镜(SEM)照片表明,改性产品的原级颗粒仍为纳米级.  相似文献   

20.
Chip morphology predictions in metal cutting have always been challenging because of the complexity of the various multiphysical phenomena that occur across the tool-chip interface. An accurate prediction of chip morphology is a key factor in the assessment of a particular machining operation with regard to both tool performance and workpiece quality. Although finite element (FE) models are being developed over the last two decades, their capabilities in modeling correct material flow around the tool tip with shear localization are very limited. FE models with an arbitrary Lagrangian Eulerian (ALE) approach are able to simulate correct material flow around the tool tip. However, these models are unable to predict any shear localization based on material flow criteria. On the other hand, FE models with a Lagrangian formulation can simulate shear localization in the chip segments; they need to make use of a mesh-based chip separation criterion that significantly affects material flow around the tool tip. In this study a mesh-free method viz. smoothed particles hydrodynamics (SPH) is implemented to simulate shear localization in the chip while machining hardened steel. Unlike other SPH models developed by some researchers, this model is based on a renormalized formulation that can consider frictional stresses along the tool-chip interface giving a realistic chip shape and material flow. SPH models with different cutting parameters are compared with the traditional FE models and it has been found that the SPH models are good for predicting shear localized chips and do not need any geometric or mesh-based chip separation criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号