共查询到20条相似文献,搜索用时 8 毫秒
1.
康道坤 《昭通师范高等专科学校学报》1996,(3)
归纳了调和级数发散性的12种证明方法。其中7种散见于各种资料,作者进行了整理,有的采用了与原证不同的叙述,比原证更具体明了;另5种是笔者用有关定理或方法导出的。 相似文献
2.
数学分析在数项级数部分有一个重要级数——凋和级数,它在研究数项级数敛散陛的过程中起到了重要作用。柯两收敛准则给出了级数收敛的充分必要条件,进而又得出级数收敛,则lim/n→∞un=0的推论,它是一个必要条件,而调和级数作为此推论有力的反面证明而倍受关注。下面就调和级数发散的证明作一归纳。 相似文献
3.
丁玉敏 《蒙自师范高等专科学校学报》1992,(2)
本文试图说明,刘玉琏。付沛仁编《数学分析讲义》中,关于函数极限的“柯西收敛准则”的充分性证明中的一个失误。并给出该定理的充分性的一种证法。 相似文献
4.
级数是数与函数的一种重要表示形式,是微积分理论研究与实际应用中的一种强有力的工具。在级数敛散性的讨论中,调和级数的应用很广泛,关于调和级数发散性的各种方法,对级数敛散性的学习和研究是有益的,特别是在其证明方面能起到举一反三、融会贯通的作用。本文对调和级数发散性的证明方法进行了整理,其中有些采用了与原证不同的叙述,但比原证更加具体明了。 相似文献
5.
6.
张军学 《西安文理学院学报》2001,16(3):31
调和级数是一个具体的、重要的数项级数,在级数理论中具有重要的地位.本文给出几种证明其发散性的不同方法,这对于熟悉调和级数,理解级数敛散性,掌握级数敛散性判定定理具有重要意义. 相似文献
7.
调和级数是级数理论中一种比较重要的发散级数,现行《数学分析》教材中,有关它的发散性证明学生在学习中不易掌握,本文从不同的角度介绍几种其他的证明方法,以加深学生对它的理解和认识。 相似文献
8.
本文给出了寻求等比数列前n项和公式的10种方法,以供中学数学教学参考。 相似文献
9.
数列的求和问题是一个饶有兴趣的问题.本文给出三种求数列{n^2}的前n项和的方法,并对数列求和的一般解法做些探讨. 相似文献
10.
11.
级数是数与函数的一种重要表示形式,是微积分理论研究与实际应用中的一种强有力的工具。在级数敛散性的讨论中,调和级数的应用很广泛,关于调和级数发散性的各种方法,对级数敛散性的学习和研究是有益的,特别是在其证明方面能起到举一反三、融会贯通的作用。本文对调和级数发散性的证明方法进行了整理,其中有些采用了与原证不同的叙述,但比原证更加具体明了。 相似文献
12.
13.
14.
15.
16.
调和级数是级数理论中一种比较重要的发散级数,现行<数学分析>教材中,有关它的发散性证明学生在学习中不易掌握.本文从不同的角度介绍几种其他的证明方法,以加深学生对它的理解和认识. 相似文献
17.
18.
广义调和级数在数值级数中占有很重要的地位,特别是对讨论正项级数敛散性的判别起着重要的作用.本文根据课程讲授体系的不同,给出几种证明广义调和级数敛散的方法. 相似文献
19.
在已知调和级数发散性的基础上,进一步对调和级数进行细分、小化,研究其敛散性,从而更深刻地认识调和级数。 相似文献
20.
杨绪河 《河北北方学院学报(社会科学版)》2002,18(3):18-21
斐波那切数列不仅可以通过递归关系予以描述 ,而且 ,可以通过构做线性方程组 ,给出其通项 ,前n项和的新的描述形式 . 相似文献