首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
向量是数学中的重要概念之一 ,全日制普通高中教科书 (试验修订本 )《数学》增加了平面向量内容。由于向量具有几何形式和代数形式“双重身份” ,使它成为中学数学知识的一个交汇点 ,成为联系多项内容的媒介。特别是在处理度量、角度、平行、垂直等问题时 ,向量工具有其独到之处。下面举例说明平面向量在平面解析几何中的应用。 (注 本文向量均用黑体字母表示。)例 1 椭圆 x29 y24=1的焦点为F1、F2 ,点P为其上的动点 ,当∠F1PF2 为钝角时 ,点P横坐标的取值范围是。 (2 0 0 0年高考题 )解 由题意设三点为P(x0 ,y0 ) ,F1(-5 ,…  相似文献   

2.
向量是新编高中数学的基本内容 .向量的引入可以启迪学生从一个新的角度分析、解决一些综合问题 ,有益于开发学生智力 ,提高学生能力 .下面就近几年高考题中的部分解析几何题目用向量法给予解答、阐述 .1 利用两个非零向量 a =(x1,y1) , b =(x2 ,y2 )的数量积 a· b=x1x2 +y1y2 .例 1  (2 0 0 0年全国高考题 )椭圆 x29+y24 =1的焦点为F1、F2 ,点P为其上的动点 ,当∠F1PF2 为钝角时 ,点P横坐标的取值范围是 .解 由题意设P(x0 ,y0 ) ,F1(- 5 ,0 ) ,F2 (5 ,0 ) ,则PF1=(- 5 -x0 ,-y0 ) ,PF2 =(5 -x0 ,-…  相似文献   

3.
解析几何是高中数学的重点内容 ,纵观历年高考试题不难发现 ,几乎每年都有一道圆锥曲线的填空题 .下面结合近年的高考试题 ,根据考查圆锥曲线的不同形式进行分类归纳 ,并探讨其解题规律 ,供参考 .一、求取值范围通常是根据已知条件 ,构造出相应的不等式 ,从而求出取值范围 .例 1  (2 0 0 0年全国高考题 )椭圆x29+ y24 =1的焦点为F1、F2 ,点P为其上的动点 .当∠F1PF2 为钝角时 ,点P横坐标的取值范围是.解 :由题意知F1(- 5 ,0 ) ,F2 (5 ,0 ) .设椭圆上的动点P的坐标是 (x ,y) ,有y2= 4 - 49x2 ,又∠F1PF2 是钝角且△F1P…  相似文献   

4.
命题 1 已知椭圆 x2a2 y2b2 =1(c2 =a2 -b2 ) ,则椭圆上存在点P ,它与两焦点F1、F2 连线互相垂直的条件是b≤c <a .证 :设P(x0 ,y0 ) F1(-c ,0 ) ,F2 (c ,0 )∵PF1⊥PF2∴ (y0 -0 ) (y0 -0 ) (x0 c) (x0 -c) =0即 :x20 y20 =c2亦即 :|PO|=c(O为坐标原点 )又∵椭圆短半轴是b ,长半轴是a ,P又在椭圆上∴b≤c <a命题 2 已知P是椭圆x2a2 y2b2 =1(c2 =a2 -b2 )上的点 ,且b≤c <a ,F1、F2 为其焦点 ,若∠F1PF2 =90° ,则△PF1F2 的面积为定值b2 .证 :由已知得 : |…  相似文献   

5.
题目 双曲线 x29-y21 6 =1的两个焦点为F1 、F2 ,点P在双曲线上 .若PF1 ⊥PF2 ,则点P到x轴的距离是 .这是一道典型的与焦点三角形有关问题 .焦点三角形是指以椭圆 (或双曲线 )的焦距F1 F2 为底边 ,顶点P在椭圆 (或双曲线 )上的三角形 .分析 本题与 2 0 0 0年高考第1 4题类似 ,有多种思路 .设点P(x0 ,y0 ) ,则 |y0 |就是点P到x轴的距离 ,故只需求出点P的纵坐标即可 (如图 1 ) .解法 1 焦半径法在双曲线中 ,a=3,b =4,c=5.依焦半径公式知|PF1 |=53x0 3,|PF2 |=53x0 -3,由勾股定理 ,得|PF1 |2 …  相似文献   

6.
在解析几何中 ,求与二次曲线中点弦有关的系列问题 ,很多同学都是通过直线和二次曲线组成的方程组来进行讨论 ,往往都很繁 .本文通过介绍两个定理 ,提供一个极其简单的方法来求解这一类问题 .定理 1 已知曲线C :F(x ,y) =0为二次曲线 ,Q为直角坐标平面内一点 ,其坐标为 (m ,n) .则恒有 :(1)曲线C :F(x ,y) =0和曲线C′ :F(2m-x ,2n-y) =0关于Q点对称 ;(2 )直线l :F(x ,y) -F(2m-x ,2n - y) =0为过Q点的一条直线 ;(3)若直线l和曲线C相交于点P(x0 ,y0 ) ,则直线l和曲线C必有另一公共点P′(2m -x0 ,2n…  相似文献   

7.
笔者在研究抛物线的有关问题时 ,意外地得到了抛物线切线的几个性质及其判定方法 ,现以定理的形式介绍如下 :定理 1 P是抛物线 y2 =2 px上一动点 ,M是点P在准线上的射影 ,F为焦点 .过P点的直线l是该抛物线切线的充要条件是直线l垂直于直线MF .     图 1说明 设P点坐标为 (x0 ,y0 ) ,则M(-p2 ,y0 ) ,F(p2 ,0 ) ,当P点为抛物线顶点 ,即 y0=0时 ,定理显然成立 ;当P点不为抛物线顶点 ,即 y0 ≠ 0时 ,充分性 由题设知直线MF的斜率   kMF =y0- p2 - p2=- y0p.因直线l⊥MF ,且P∈l,由直线方程的…  相似文献   

8.
题目 :P是椭圆x21 6 y22 5=1上的点 ,F1、F2为其焦点 ,若∠F1PF2 =90°,求△PF1F2 的面积 .解 :∵S△PF1F2 =12 |F1F2 |·|PF2 |,而|PF1| |PF2 |=1 0 ,|PF1|2 |PF2 |2 =|F1F2 |2 =3 6 ,联立求解得|PF1|·|PF2 |=1 0 0 -3 62 =3 2 .∴ S△PF1F2 =1 6 .一、以上解答正确吗 ?以上解答看上去无懈可击 ,但实际不正确 .我们再看以下解法 :其解法思路是先求出满足条件的P点坐标 ,然后再求△PF1F2 的面积 ,设满足题目条件的点P坐标为P(x0 ,y0 ) .∵∠F1PF2 =90°,∴ ( y0 3 ) ( y0 -3 ) x0…  相似文献   

9.
应用 1:利用导数的几何意义解题函数 y =f(x)在x0 处的导数的几何意义 ,就是曲线 y =f(x)在点P(x0 ,f(x0 ) )处的切线的斜率 .例 1 若抛物线y =4x2 上的点P到直线y =4x - 5的距离最短 ,则点P的坐标为 .  解 :在抛物线 y =4x2 上求一点P到直线y =4x - 5的距离为最短 ,即找一点P使过该点的切线与直线 y =4x - 5平行 .对函数y =4x2 求导 ,得 y′ =8x ,所以曲线上任一点的切线斜率k =8x .令 8x =4 ,求出x=12 ,代入抛物线方程得y=1.故P 12 ,1.应用 2 :利用导数求函数的单调区间一般地 ,设函数y =f(x)在…  相似文献   

10.
圆锥曲线弦的中点问题的简捷解法   总被引:1,自引:0,他引:1  
有关圆锥曲线弦的中点问题 ,在现行解几教材中时常出现 ,本文将探讨解决此类问题的一种方法 ,我们称之为“中心对称变换法” .我们知道对于圆锥曲线C1 :Ax2 Cy2 Dx Ey F =0 (1 )关于点M(x0 ,y0 )中心对称的曲线C2 的方程是A(2x0 -x) 2 C(2y0 -y) 2 D(2x0 -x) E(2y0-y) F =0 (2 )若曲线C1 和C2 相交于P、Q两点 ,则由 (1 ) -(2 )整理得(2Ax0 D)x (2Cy0 E)y -(2Ax20 2y20 C Dx0 Ey0 ) =0 (3)它表示一条以对称中心M(x0 ,y0 )为中点的弦PQ所在的直线 .下面我们利用以上方程解…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号