首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cricket     
The laws of bowling in cricket state ‘a ball is fairly delivered in respect of the arm if, once the bowler's arm has reached the level of the shoulder in the delivery swing, the elbow joint is not straightened partially or completely from that point until the ball has left the hand’. Recently two prominent bowlers, under suspicion for transgressing this law, suggested that they are not ‘throwing’ but due to an elbow deformity are forced to bowl with a bent bowling arm. This study examined whether such bowlers can produce an additional contribution to wrist/ball release speed by internal rotation of the upper arm. The kinematics of a bowling arm were calculated using a simple two‐link model (upper arm and forearm). Using reported internal rotation speeds of the upper arm from baseball and waterpolo, and bowling arm kinematics from cricket, the change in wrist speed was calculated as a function of effective arm length, and wrist distance from the internal rotation axis. A significant increase in wrist speed was noted. This suggests that bowlers who can maintain a fixed elbow flexion during delivery can produce distinctly greater wrist/ball speeds by using upper arm internal rotation.  相似文献   

2.
The laws of bowling in cricket state 'a ball is fairly delivered in respect of the arm if, once the bowler's arm has reached the level of the shoulder in the delivery swing, the elbow joint is not straightened partially or completely from that point until the ball has left the hand'. Recently two prominent bowlers, under suspicion for transgressing this law, suggested that they are not 'throwing' but due to an elbow deformity are forced to bowl with a bent bowling arm. This study examined whether such bowlers can produce an additional contribution to wrist/ball release speed by internal rotation of the upper arm. The kinematics of a bowling arm were calculated using a simple two-link model (upper arm and forearm). Using reported internal rotation speeds of the upper arm from baseball and waterpolo, and bowling arm kinematics from cricket, the change in wrist speed was calculated as a function of effective arm length, and wrist distance from the internal rotation axis. A significant increase in wrist speed was noted. This suggests that bowlers who can maintain a fixed elbow flexion during delivery can produce distinctly greater wrist/ball speeds by using upper arm internal rotation.  相似文献   

3.
The purpose of this study was to investigate the utility of peak outward acceleration (POA) measured from an inertial sensor worn at the wrist as an indicator of the critical end point of the bowling action – ball release, a critical element when assessing illegal actions. Twenty-one finger-spin and fast bowlers from nine countries were recruited from the ICC under-19 Cricket World Cup to take part in this research. Bowlers delivered a cross section of their standard deliveries while wearing an inertial sensor placed on their wrists. Ball release was determined by a validated motional analysis ball release (MABR) protocol and compared to the simultaneously collected POA. POA was shown to be highly correlated with MABR (R2 = 0.98) and a Bland–Altman plot indicated that all 148 trials were within the 3.42 frame (0.014 s) limits of agreement. POA when measured by an inertial sensor worn on the wrist during bowling had a close relationship with an established method of identifying ball release in a biomechanical laboratory regardless of bowler and delivery type. Further, accuracy can be achieved with the adoption of a simple regression equation applied to the POA and as such is a valid measure of ball release in cricket bowlers.  相似文献   

4.
Bowlers in cricket try to disguise their bowling action by movement pattern similarity. The batter's task is, therefore, to solve rapidly perceptual discrimination problems. Previous research has suggested that batters can discriminate perceptual cues that provide depth or target information. However, at present, there is a lack of applied research evidence on further perceptual cue utilization, including bowling delivery identification. This ability is required when batting against wrist-spin bowlers who may use five different types of delivery. In the present study, we assessed this perceptual discrimination ability among three distinct standards of batters. In addition, the relative potency of body action and ball flight information was assessed by visual occlusion techniques. We found that more expert batters in general showed greater perceptual discrimination skills when faced with different ball types. However, this discrimination ability was linked specifically to delivery type and to previous experience. We also found that additional ball flight information provided no more advantage to this discrimination ability. This finding reinforces the importance of advanced cue information and the need to expose cricket batters to different bowling actions. Further study of the development of movement pattern recognition is recommended.  相似文献   

5.
Bowlers in cricket try to disguise their bowling action by movement pattern similarity. The batter’s task is, therefore, to solve rapidly perceptual discrimination problems. Previous research has suggested that batters can discriminate perceptual cues that provide depth or target information. However, at present, there is a lack of applied research evidence on further perceptual cue utilization, including bowling delivery identification. This ability is required when batting against wrist-spin bowlers who may use five different types of delivery. In the present study, we assessed this perceptual discrimination ability among three distinct standards of batters. In addition, the relative potency of body action and ball flight information was assessed by visual occlusion techniques. We found that more expert batters in general showed greater perceptual discrimination skills when faced with different ball types. However, this discrimination ability was linked specifically to delivery type and to previous experience. We also found that additional ball flight information provided no more advantage to this discrimination ability. This finding reinforces the importance of advanced cue information and the need to expose cricket batters to different bowling actions. Further study of the development of movement pattern recognition is recommended.  相似文献   

6.
Spin bowling plays a fundamental role within the game of cricket yet little is known about the initial ball kinematics in elite and pathway spin bowlers or their relationship to performance. Therefore, the purpose of this study was to record three-dimensional ball kinematics in a large and truly high level cohort of elite and pathway finger-spin (FS) and wrist-spin (WS) bowlers, identifying potential performance measures that can be subsequently used in future research. A 22-camera Vicon motion analysis system captured retro-reflective markers placed on the seam (static) and ball (dynamic) to quantify ball kinematics in 36 FS (12 elite and 24 pathway) and 20 WS (eight elite and 12 pathway) bowlers. Results indicated that FS bowlers delivered the ball with an increased axis of rotation elevation, while wrist-spin bowlers placed greater amounts of revolutions on the ball. It also highlighted that ball release (BR) velocity, revolutions and velocity/revolution index scores for both groups and seam stability for FS bowlers, and seam azimuth angle and spin axis elevation angle for WS bowlers, were discriminators of playing level. As such these variables could be used as indicators of performance (i.e. performance measures) in future research.  相似文献   

7.
This modelling study sought to describe the relationships between elbow joint kinematics and wrist joint linear velocity in cricket fast bowlers, and to assess the sensitivity of wrist velocity to systematic manipulations of empirical joint kinematic profiles. A 12-camera Vicon motion analysis system operating at 250 Hz recorded the bowling actions of 12 high performance fast bowlers. Empirical elbow joint kinematic data were entered into a cricket bowling specific “Forward Kinematic Model” and then subsequently underwent fixed angle, angular offset and angle amplification manipulations. A combination of 20° flexion and 20° abduction at the elbow was shown to maximise wrist velocity within the experimental limits. An increased elbow flexion offset manipulation elicited an increase in wrist velocity. Amplification of elbow joint flexion–extension angular displacement indicated that, contrary to previous research, elbow extension range of motion and angular velocity at the time of ball release were negatively related to wrist velocity. Some relationships between manipulated joint angular waveforms and wrist velocity were non-linear, supporting the use of a model that accounts for the non-linear relationships between execution and outcome variables in assessing the relationships between elbow joint kinematics and wrist joint velocity in cricket fast bowlers.  相似文献   

8.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15°, thus requiring a measurement to confirm legality in “suspect” bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion–extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15°. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

9.
Kinematic studies have shown that fast bowlers have run-up velocities, based on centre of mass velocity calculations, which are comparable to elite javelin throwers. In this study, 34 fast bowlers (22.3 ± 3.7 years) of premier grade level and above were tested using a three-dimensional (3-D) motion analysis system (240 Hz). Bowlers were divided into four speed groups: slow-medium, medium, medium-fast, and fast. The mean centre of mass velocity at back foot contact (run-up speed) was 5.3 ± 0.6 m/s. Centre of mass velocity at back foot contact was significantly faster in the fastest two bowling groups compared to the slow-medium bowling group. In addition, stepwise multiple regression analysis showed that the centre of mass deceleration over the delivery stride phase was the strongest predictor of ball speed in the faster bowling groups. In conclusion, centre of mass kinematics are an important determinant of ball speed generation in fast bowlers. In particular, bowlers able to coordinate their bowling action with periods of centre of mass deceleration may be more likely to generate high ball speed.  相似文献   

10.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15 degrees, thus requiring a measurement to confirm legality in "suspect" bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion-extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15.5 degrees. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

11.
Kinematic studies have shown that fast bowlers have run-up velocities, based on centre of mass velocity calculations, which are comparable to elite javelin throwers. In this study, 34 fast bowlers (22.3 +/- 3.7 years) of premier grade level and above were tested using a three-dimensional (3-D) motion analysis system (240 Hz). Bowlers were divided into four speed groups: slow-medium, medium, medium-fast, and fast. The mean centre of mass velocity at back foot contact (run-up speed) was 5.3 +/- 0.6 m/s. Centre of mass velocity at back foot contact was significantly faster in the fastest two bowling groups compared to the slow-medium bowling group. In addition, stepwise multiple regression analysis showed that the centre of mass deceleration over the delivery stride phase was the strongest predictor of ball speed in the faster bowling groups. In conclusion, centre of mass kinematics are an important determinant of ball speed generation in fast bowlers. In particular, bowlers able to coordinate their bowling action with periods of centre of mass deceleration may be more likely to generate high ball speed.  相似文献   

12.
In order to get bounce and movement seam bowlers need to bowl the ball “into” the pitch. Standard deliveries by elite players are typically projected at around 7° below horizontal. In contrast, young players currently often need to release the ball almost horizontally in an effort to get the ball to bounce close enough to the batter. We anticipated that shortening the pitch could be a simple way to help young bowlers to release the ball at a better angle and with more consistency. Twenty county or best in club age group under 10 and under 11 seam bowlers were analysed bowling indoors on two different pitch lengths. They were found to project the ball on average 3.4° further below horizontal on a 16 yard pitch compared with a 19 yard pitch, while ball speed and position at release changed negligibly. Pitch length did not affect the consistency of the release parameters. The shorter pitch led to a ball release angle closer to that of elite bowlers without changing release speed, and this should enable players to achieve greater success and develop more variety in their bowling.  相似文献   

13.
Abstract

The aim of this study was to examine the relationship between shoulder alignment and elbow angle during the delivery action of fast-medium bowlers. The elbow and upper trunk alignment were recorded for 13 high-performance bowlers (mean age 20 years) using a 12-camera Vicon motion analysis system operating at 250 Hz. The three highest velocity trials for “good” and “short” length deliveries were analysed. Results showed that bowlers with a more front-on shoulder alignment at back-foot impact and when the upper arm was horizontal to the ground experienced a significantly greater elbow flexion – extension range when compared with those who had a more side-on orientation at the same point in the delivery action. Bowlers with greater shoulder counter-rotation also recorded higher elbow flexion and subsequently extension during the period from upper arm horizontal to ball release. Shoulder alignment and elbow angles were similar for “short” and “good” length deliveries. It was concluded that bowlers with a more front-on shoulder orientation at back-foot impact demonstrated a higher elbow extension from upper arm horizontal to ball release and are therefore more likely to infringe International Cricket Council elbow tolerance levels, compared with those who adopt a more side-on shoulder orientation at back-foot impact.  相似文献   

14.
In this study we analysed technique, ball speed and trunk injury data collected at the Australian Institute of Sport (AIS) from 42 high performance male fast bowlers over a four year period. We found several notable technique inter-relationships, technique and ball speed relationships, and associations between technique and trunk injuries. A more front-on shoulder alignment at back foot contact was significantly related to increased shoulder counter-rotation (p < 0.001). Bowlers who released the ball at greater speeds had an extended front knee, or extended their front knee, during the front foot contact phase (p < 0.05). They also recorded higher braking and vertical impact forces during the front foot contact phase and developed those forces more rapidly (p < or =0.05). A maximum hip-shoulder separation angle occurring later in the delivery stride (p = 0.05) and a larger shoulder rotation to ball release (p = 0.05) were also characteristics of faster bowlers. Bowlers suffering lower back injuries exhibited typical characteristics of the 'mixed' technique. Specifically, the hip to shoulder separation angle at back foot contact was greater in bowlers who reported soft tissue injuries than in non trunk-injured bowlers (p = 0.03), and shoulder counter-rotation was significantly higher in bowlers who reported lumbar spine stress fractures than non trunk-injured bowlers (p = 0.01). The stress fracture group was also characterised by a larger hip angle at front foot contact and ball release, whereas a more flexed front knee at ball release characterised the non trunk-injured group.  相似文献   

15.
An overview of cricket ball swing   总被引:1,自引:0,他引:1  
The aerodynamic properties of a cricket ball have intrigued cricket players and spectators for years, arguably since the advent of the game itself. The main interest is in the fact that the ball can follow a curved flight path that may not always be under the control of the bowler. The basic aerodynamic principles responsible for the nonlinear flight or ‘swing’ of a cricket ball were identified decades ago and many papers have been published on the subject. Over the last 25 years or so, several empirical investigations have also been conducted on cricket ball swing, which revealed the amount of attainable swing and identified the parameters that affect it. Those findings are reviewed here with emphasis on phenomena such as late swing and the effects of humidity on swing. The relatively new concept of ‘reverse swing’, how it can be achieved in practice, and the role in it of ‘ball tampering’, are also discussed in detail. In particular, the ability of some bowlers to effectively swing an old ball in the conventional, reverse and the newly termed ‘contrast’ swing mode is addressed. A discussion of the ‘white” cricket ball used in the 1999 and 2003 World Cup tournaments, which supposedly possesses different swing properties compared to a conventional red ball, is also included. This is a current overview of cricket ball swing rather than a detailed review of all research work performed on the topic. The emphasis is on presenting scientific explanations for the various aerodynamic phenomena that affect cricket ball swing on a cricket ground.  相似文献   

16.
通过对2010年广州亚运会板球测试赛中国女队7名主力投手技术的高速影像解析,从球速、投球臂角速度、投球步落地位置和步长、落地时身体姿态、球出手瞬间关节角等方面分析比较中国女投手的各项投球技术。结果发现:不同类型投手之间技术特征差异性明显,快投手比旋转投手的落地到球出手时间短;好投手比差投手落地位置和空中姿态稳定性好。通过研究还发现部分投手存在球出手时膝关节弯曲、手臂弯曲等技术缺陷,以及前脚越过击球线等技术犯规错误,提醒在比赛中应引起注意。  相似文献   

17.
The purpose of this study was to discover the contributions of individual upper body segmental rotations to ball release speed for cricket bowling and determine whether attempting to forcefully flex the lower trunk leads to an increase in ball release speed and bowling accuracy. Three dimensional kinematic data of eight male fast bowlers were recorded by a Vicon motion capture system under three cricket bowling conditions: (1) participants bowled at their stock delivery speeds (sub-max condition), (2) participants bowled at their absolute maximal speeds (max condition), and (3) participants bowled at their absolute maximal speeds but forced to flex the lower trunk (max-trunk condition). The accuracy of each delivery was also measured. The results showed that the average ball release speeds for the max-trunk condition were faster than the other two conditions. A general pattern of proximal to distal sequencing was observed for all three conditions. There was a slight decrement in accuracy seen in the max-trunk condition with respect to the other two conditions. For all three conditions, the upper arm rotation made the largest contribution, followed in turn by torso and thorax rotation, pelvis rotation, linear velocity of pelvis, and forearm and hand rotation.  相似文献   

18.
Fast bowling in cricket is an activity that is well recognised as having high injury prevalence and there has been debate regarding the most effective fast bowling technique. The aim of this study was to determine whether two-year coaching interventions conducted in a group of elite young fast bowlers resulted in fast bowling technique alteration. Selected kinematics of the bowling action of 14 elite young fast bowlers were measured using an 18 camera Vicon Motion Analysis system before and after two-year coaching interventions that addressed specific elements of fast bowling technique. Mann-Whitney tests were used to determine whether any changes in kinematic variables occurred pre- and post-intervention between those who had the coaching interventions and those who didn't. The coaching interventions, when applied, resulted in a more side-on shoulder alignment at back foot contact (BFC) (p = 0.002) and decreased shoulder counter-rotation (p = 0.001) however, there was no difference in the degree of change in back and front knee flexion angles or lower trunk side-flexion. This study has clearly shown that specific aspects of fast bowling technique are changeable over a two-year period in elite level fast bowlers and this may be attributed to coaching intervention.  相似文献   

19.
The aim of this study was to examine the relationship between shoulder alignment and elbow angle during the delivery action of fast-medium bowlers. The elbow and upper trunk alignment were recorded for 13 high-performance bowlers (mean age 20 years) using a 12-camera Vicon motion analysis system operating at 250 Hz. The three highest velocity trials for "good" and "short" length deliveries were analysed. Results showed that bowlers with a more front-on shoulder alignment at back-foot impact and when the upper arm was horizontal to the ground experienced a significantly greater elbow flexion--extension range when compared with those who had a more side-on orientation at the same point in the delivery action. Bowlers with greater shoulder counter-rotation also recorded higher elbow flexion and subsequently extension during the period from upper arm horizontal to ball release. Shoulder alignment and elbow angles were similar for "short" and "good" length deliveries. It was concluded that bowlers with a more front-on shoulder orientation at back-foot impact demonstrated a higher elbow extension from upper arm horizontal to ball release and are therefore more likely to infringe International Cricket Council elbow tolerance levels, compared with those who adopt a more side-on shoulder orientation at back-foot impact.  相似文献   

20.
This study sought to identify kinematic differences in finger-spin bowling actions required to generate variations in ball speed and spin between different playing groups. A 12-camera Vicon system recorded the off-spin bowling actions of six elite and 13 high-performance spin bowlers, and the “doosra” actions of four elite and two high-performance players. Forearm abduction and fixed elbow flexion in the bowling arm were higher for the elite players compared with the high-performance players. The elite bowlers when compared with the high-performance players delivered the off-break at a statistically significant higher velocity (75.1 and 67.1 km/hr respectively) and with a higher level of spin (26.7 and 22.2 rev/s respectively). Large effect sizes were seen between ball rotation, pelvic and shoulder alignment rotations in the transverse plane. Elbow extension was larger for elite bowlers over the period upper arm horizontal to ball release. Compared to the off-break, larger ranges of shoulder horizontal rotation, elbow and wrist extension were evident for the “doosra”. Furthermore, the “doosra” was bowled with a significantly longer stride length and lower ball release height. Although not significantly different, moderate to high effect size differences were recorded for pelvis rotation, elbow extension and elbow rotation ranges of motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号