共查询到20条相似文献,搜索用时 15 毫秒
1.
Coral Falco Javier Molina-García Octavio Álvarez Isaac Estevan 《Sports biomechanics / International Society of Biomechanics in Sports》2013,12(4):381-382
The aim of this study was to investigate the effects of target distance on temporal and impact force parameters that are important performance factors in taekwondo kicks. Forty-nine taekwondo athletes (age = 24.5 ± 5.9 years; mass = 79.9 ± 10.8 kg) were recruited: 13 male experts, 21 male novices, 8 female experts, and 6 female novices. Impact force, reaction time, and execution time were computed. Three-way repeated measure ANOVAs revealed significant ‘distance’ effect on impact force, reaction time, and execution time (p = 0.001). Comparisons between distance conditions revealed that taekwondo athletes kicked with higher impact force from short distance (17.6 ± 7.5 N/kg) than from long distance (13.1 ± 5.7 N/kg) (p < 0.001), had lower reaction time from short distance (498 ± 90 ms) and normal distance (521 ± 111 ms) than from long distance (602 ± 121 ms) (p < 0.001), and had lower execution time from short distance (261 ± 69 ms/m) than from normal distance (306 ± 105 ms/m) or from long distance (350 ± 106 ms/m) (p = 0.003 and p < 0.001, respectively). In conclusion, target distance affected the kick performance; as distance increases, impact force decreased and reaction time increased. Therefore, when reaction to a simple visual stimulus is needed, kicking from a long distance is not recommended, as longer time is required to respond. 相似文献
2.
3.
Nahoko Sato Hiroyuki Nunome Luke S. Hopper Yasuo Ikegami 《Sports biomechanics / International Society of Biomechanics in Sports》2019,18(1):28-38
Ankle taping is commonly used to prevent ankle sprains. However, kinematic assessments investigating the biomechanical effects of ankle taping have provided inconclusive results. This study aimed to determine the effect of ankle taping on the external ankle joint moments during a drop landing on a tilted surface at 25°. Twenty-five participants performed landings on a tilted force platform that caused ankle inversion with and without ankle taping. Landing kinematics were captured using a motion capture system. External ankle inversion moment, the angular impulse due to the medio-lateral and vertical components of ground reaction force (GRF) and their moment arm lengths about the ankle joint were analysed. The foot plantar inclination relative to the ground was assessed. In the taping condition, the foot plantar inclination and ankle inversion angular impulse were reduced significantly compared to that of the control. The only component of the external inversion moment to change significantly in the taped condition was a shortened medio-lateral GRF moment arm length. It can be assumed that the ankle taping altered the foot plantar inclination relative to the ground, thereby shortening the moment arm of medio-lateral GRF that resulted in the reduced ankle inversion angular impulse. 相似文献
4.
Football ankle protectors were evaluated against a kick from a studded boot. An anatomically correct test rig was used to
evaluate materials and designs. Sensors were used to determine peak pressures on the bony protuberances, and load spreading.
Finite element analysis (FEA), varying the material parameters and component dimensions, were used to explore pressure distributions
and shell buckling. Current designs, with thin ethylene vinyl acetate (EVA) foam and low-density polyethylene (LDPE) shells,
cannot prevent some football kicks causing bruising of the ankle. The protection level could be improved by using thicker
foams of higher modulus, and domed shells of higher stiffness. 相似文献
5.
J. Sinclair P. J. Taylor C. J. Edmundson D. Brooks S. J. Hobbs 《Sports biomechanics / International Society of Biomechanics in Sports》2013,12(3):430-437
Cardan/Euler and helical angles are the popular methods of quantifying angular kinematics. Cardan angles are sequence dependent and crosstalk can influence the kinematic calculations. The International Society of Biomechanics (ISB) recommends a sagittal, coronal, and then transverse (XYZ) sequence of rotations, although it has been proposed that when calculating rotations outside of the sagittal plane, this may not be the most appropriate method. This study investigated the influence of the helical and six available Cardan sequences on three-dimensional (3D) ankle joint kinematics. Kinematic data were obtained using an eight-camera motion analysis system as participants ran at 4.0 m/s ± 5%. Repeated measures ANOVAs were used to compare kinematic parameters, and intra-class correlations were employed to identify evidence of crosstalk across planes. The results indicate that in the transverse and coronal planes, peak angle and range of motion values using the YXZ and ZXY sequences were significantly greater than the other sequences. Furthermore, utilization of YXZ and ZXY sequences was associated with the strongest correlations from the sagittal plane, and the XYZ sequence was found to be associated with the lowest correlations. It appears that for the representation of 3D ankle joint kinematics, the XYZ sequence is associated with minimal planar crosstalk and as such its use is encouraged. 相似文献
6.
通过对中国优秀蹦床运动员的康复个案,探讨康复训练对踝关节撞击综合症的干预效果。在为期16周的第一期康复治疗结束后,队员的力量、稳定性、核心稳定性和FMS测试均呈现良好的状态,运动员可以进行正常的训练和比赛;在为期16周的第二期康复训练结束后,运动员的各项身体能力都有所提高,有效的保障了正常的比赛和训练,取得了良好的效果。 相似文献
7.
8.
Elena Seminati Dario Cazzola Ezio Preatoni Grant Trewartha 《Sports biomechanics / International Society of Biomechanics in Sports》2017,16(1):58-75
Tackling in Rugby Union is an open skill which can involve high-speed collisions and is the match event associated with the greatest proportion of injuries. This study aimed to analyse the biomechanics of rugby tackling under three conditions: from a stationary position, with dominant and non-dominant shoulder, and moving forward, with dominant shoulder. A specially devised contact simulator, a 50-kg punch bag instrumented with pressure sensors, was translated towards the tackler (n = 15) to evaluate the effect of laterality and tackling approach on the external loads absorbed by the tackler, on head and trunk motion, and on trunk muscle activities. Peak impact force was substantially higher in the stationary dominant (2.84 ± 0.74 kN) than in the stationary non-dominant condition (2.44 ± 0.64 kN), but lower than in the moving condition (3.40 ± 0.86 kN). Muscle activation started on average 300 ms before impact, with higher activation for impact-side trapezius and non-impact-side erector spinae and gluteus maximus muscles. Players’ technique for non-dominant-side tackles was less compliant with current coaching recommendations in terms of cervical motion (more neck flexion and lateral bending in the stationary non-dominant condition) and players could benefit from specific coaching focus on non-dominant-side tackles. 相似文献
9.
J. Keith Gulledge 《Journal of sports sciences》2013,31(2):189-196
Abstract In this study, we compared mechanical factors in the reverse and three-inch power punches. Twelve expert male martial artists stood on a force plate, and executed reverse and power punches against a padded target fixed to a wall-mounted force plate. The force plates measured horizontal forces, and subsequently impulses and body centre of mass velocity changes. The motions of four markers attached to the arm were also collected, and were used to compute the horizontal velocities of the knuckle and of the arm centre of mass. The power punch produced smaller velocities immediately before impact than the reverse punch for the whole-body centre of mass (0.14 vs. 0.31 m · s?1), for the arm centre of mass (2.86 vs. 4.68 m · s?1), and for the knuckle (4.09 vs. 6.43 m · s?1). The peak force exerted by the fist was much smaller in the power punch than in the reverse punch (790 vs. 1450 N). However, the linear impulse exerted by the fist during the first 0.20 s of contact was slightly larger in the power punch than in the reverse punch (43.2 vs. 37.7 N · s). The results indicate that the power punch is less potent than the reverse punch, but slightly more effective for throwing the opponent off balance. 相似文献
10.
Chen-Hua Yeow Chin-Yang Kong Peter Vee-Sin Lee James Cho-Hong Goh 《Journal of sports sciences》2013,31(11):1143-1151
Abstract Anterior cruciate ligament (ACL) rupture, during ski-landing, is caused by excessive knee joint forces and kinematics, like anterior tibial translation, internal tibial rotation, and valgus rotation. It is not well understood how these forces/kinematics are directly related to ski-landing impact. In the present study, we applied simulated ski-landing impact to knee specimens, and examined joint force/kinematic responses and their correlations with impact force. Ten human cadaveric knees were subjected to axial impact loading at 70° of flexion to simulate ski-landing impact. Impact was repeated with incremental magnitude until ACL failure. Axial impact forces, anterior-posterior and medial-lateral tibial forces were measured using a tri-axial load cell. Anterior-posterior tibial translation, internal-external tibial rotation, and valgus-varus rotation were determined using a motion-capture system. We found positive correlations of axial impact force with anterior tibial force, medial tibial force, anterior tibial translation, internal tibial rotation, and valgus joint rotation. Axial impact forces were more strongly correlated with anterior tibial forces (R 2 = 0.937 ± 0.050), anterior tibial translation (R 2 = 0.916 ± 0.059), and internal tibial rotation (R 2 = 0.831 ± 0.141) than medial tibial force (R 2 = 0.677 ± 0.193) and valgus joint rotation (R 2 = 0.630+0.271). During ski-landing, these joint forces/kinematics can synergistically act to increase ACL injury risk, whereby the failure mechanism would be dominated by anterior tibial forces, anterior tibial translation, and internal tibial rotation. 相似文献
11.
12.
Songning Zhang Michael Wortley Julia Freedman Silvernail Daniel Carson Maxime R. Paquette 《运动与健康科学(英文)》2012,1(2):114-120
PurposeThe purpose of this study was to examine effects of a sport version of a semi-rigid ankle brace (Element?) and a soft ankle brace (ASO) on ankle biomechanics and ground reaction forces (GRFs) during a drop landing activity in subjects with chronic ankle instability (CAI) compared to healthy subjects with no history of CAI.MethodsTen healthy subjects and 10 subjects who had multiple ankle sprains participated in the study as the control and unstable subjects, respectively. The CAI subjects were age, body mass index and gender matched with the control subjects. The arch index and ankle functions of the subjects were measured in a subject screening session. During the biomechanical test session, participants performed five trials of drop landing from 0.6 m, wearing no brace (NB), Element? brace and ASO brace. Simultaneous recording of three-dimensional kinematic (240 Hz) and GRF (1200 Hz) data were performed.ResultsThe CAI subjects had lower ankle functional survey scores. The arch index and deformity results showed greater arch deformity of Element? against a static load than in NB and ASO due to greater initial arch position held by the brace. CAI participants had greater eversion velocity than healthy controls. The ASO brace reduced the first peak vertical GRF whereas Element? increased 2nd peak vertical GRF. Element? brace reduced eversion range of motion (ROM) and peak eversion velocity compared to NB and ASO. In addition, Element? reduced dorsiflexion ROM and increased peak plantarflexion moment compared to NB and ASO.ConclusionResults of static arch measurements and dynamic ankle motion suggest that the restrictions offered by both braces are in part due to more dorsiflexed ankle positions at contact, and higher initial arch position and stiffer ankle for Element?. 相似文献
13.
Kathy Liu Caitlin Dierkes Logan Blair 《Sports biomechanics / International Society of Biomechanics in Sports》2016,15(3):245-254
Ankle sprains are the most common injury in sport. With stability being an important risk factor for ankle sprains, a jump-landing protocol that can elicit differences in time-to-stabilisation (TTS) is necessary. The objective of this study was to develop a jump-landing protocol that could identify differences in TTS among healthy, ‘coper’, and unstable ankles of high-level athletes. 61 Division I collegiate athletes (32 females, 29 males; age: 19.9 ± 1.2 years; height: 176.6 ± 9.5 cm; mass: 74.3 ± 10.8 kg) participated in a jump-landing protocol that utilised sporting movements with preparatory steps and a vertical propulsion of the body in two multi-directional jumps. Utilising the landing on a force plate, ground reaction forces were used to quantify TTS. TTS of the unstable group (1.58 ± 0.62s) was significantly longer than the healthy (1.19 ± 0.37s; p = 0.050) and ‘coper’ (1.13 ± 0.49s; p = 0.019) groups in the forward hops. In addition, TTS of the lateral hops in the unstable group (1.55 ± 0.63s) was also significantly longer than the healthy (1.14 ± 0.37s; p = 0.026) and ‘coper’ (1.15 ± 0.39s; p = 0.028) groups. This new jump-landing protocol was able to elicit differences in TTS in high-level athletes that were not found using previous protocols. This new jump-landing protocol could be an effective tool to identify injury risk for high-level athletes. 相似文献
14.
Hiroyuki Nunome Mark Lake Apostolos Georgakis Lampros K. Stergioulas 《Journal of sports sciences》2013,31(1):11-22
Abstract The purpose of this study was to capture the lower limb kinematics before during and after ball impact of soccer kicking by examining the influence of both sampling rate and smoothing procedures. Nine male soccer players performed maximal instep kicks and the three-dimensional leg movements were captured at 1000 Hz. Angular and linear velocities and accelerations were determined using four different processing approaches: processed using a modified version of a time-frequency filtering algorithm (WGN), smoothed by a second-order low-pass Butterworth filter at 200 Hz cut-off (BWF), re-sampled at 250 Hz without smoothing (RSR) and re-sampled at 250 Hz but filtered by the same Butterworth filter at 10 Hz cut-off (RSF). The WGN approach appeared to establish representative kinematics, whereas the other procedures failed to remove noisy oscillation from the baseline of signal (BWF), lost the peaks of rapid changes (RSR) or produced totally distorted movement patterns (RSF). The results indicate that the procedures used by some previous studies may have been insufficient to adequately capture the lower limb motion near ball impact. We propose a new time-frequency filtering technique as a better way to smooth data whose frequency content varies dramatically. 相似文献
15.
AbstractAnkle sprains are a common injury and those affected are at a risk of developing chronic ankle instability (CAI). Complications of an acute sprain include increased risk of re-injury and persistent disability; however, the exact link between ankle sprains and chronic instability has yet to be elucidated. The purpose of this study was to investigate neuromuscular control (including kinematics, kinetics and EMG) during stepping down from a curb, a common yet challenging daily activity, in persons with ankle instability (n = 11), those with a history of ankle sprain without persistent instability, called ankle sprain “copers” (CPRs) (n = 9) and uninjured controls (CTLs) (n = 13). A significant group difference was noted as the CPR group demonstrated increased tibialis anterior activity in both the preparatory (pre-touchdown) and reactive (post-touchdown) phases when compared to healthy and unstable groups (P < 0.05). It follows that the CPR group also demonstrated a significantly less plantar-flexed position at touchdown than the other two groups (P < 0.05). This is a more stable position to load the ankle and this strategy differed from that used by participants with CAI and uninjured CTLs. These findings provide insight into the neuromuscular control strategies of CPRs, which may allow them to more appropriately control ankle stability following sprains. 相似文献
16.
Songning Zhang 《体育科研》2015,(1):1-10-19
研究背景:现有研究文献尚无有关在着地过程中不同表面倾斜度和踝关节护具效应的运动学、动力学和地面反作用力的综合数据。通过对比25°斜面和平面的着地以及使用和不使用踝关节护具情况下来检测踝关节的生物力学特性。研究方法: 11名健康受试者[年龄:(24.6±3.5)岁,身高:(24.6±0.10)m,质量:(65.6±14.9)kg)参与本次研究。受试者在4个动态运动条件下各进行5五次实验:从0.45米高处垂直下落至25°的斜面(IS)或平面(FS)上,使用或不使用半刚性踝关节护具,同时采集三维运动学和测力台地面反作用力数据。利用2×2(表面X踝关节护具)的重复测量方差分析来评估选定的变量。研究结果:与平面着地相比,斜面着地造成较小的垂直和内侧地面反作用力峰值。研究还发现踝关节背曲运动范围、着地角度和背曲速度、最大外翻与跖曲角速度提高,但产生了更大内翻角度和运动范围、着地内翻速度和最大跖曲力矩。踝关节护具在斜面着地时减少了达到地面反作用力第二垂直峰值的时间、着地角度、背曲速度、最大外翻和跖曲速度,但增加了跖曲力矩的最大值。研究结论:斜面增加踝关节额状面的运动范围和踝关节负荷。但是,就斜面着地而言,踝关节护具对踝关节额状面的运动范围和踝关节负荷的影响是相当有限的。 相似文献
17.
ABSTRACTThis study examined the effect of wearing time on comfort perception and landing biomechanics of basketball shoes with different midsole hardness. Fifteen basketball players performed drop landing and layup first step while wearing shoes of different wearing time (new, 2-, 4-, 6- and 8-week) and hardness (soft, medium and hard). Two-way ANOVA with repeated measures was performed on GRF, ankle kinematic and comfort perception variables. Increased wearing time was associated with poorer force attenuation and comfort perception during landing activities (p < 0.05). The new shoes had significantly smaller forefoot (2- and 4-week) and rearfoot peak GRF impacts (all time conditions) in drop landing and smaller rearfoot peak GRF impact (6- and 8-week) in layup; shoes with 4-week of wearing time had significantly better perceptions of forefoot cushioning, forefoot stability, rearfoot cushioning, rearfoot stability and overall comfort than the new shoes (p < 0.05). Compared with hard shoes, the soft shoes had better rearfoot cushioning but poorer forefoot cushioning (p < 0.05). Shoe hardness and wearing time would play an influential role in GRF and comfort perception, but not in ankle kinematics. Although shoe cushioning performance would decrease even after a short wearing period, the best comfort perception was found at 4-week wearing time. 相似文献
18.
Christopher Bishop Jonathan D. Buckley Adrian E. Esterman John B. Arnold 《Journal of sports sciences》2020,38(18):2100-2107
19.
Abstract Ethylene vinyl acetate and polyurethane are widely used materials for shoe midsoles. The present study investigated the durability of running shoes made from ethylene vinyl acetate and one type of polyurethane (polyurethane-1), which have similar hardness and density, and another type of polyurethane (polyurethane-2), which has high hardness/density. All shoes differed from one another only in terms of the midsole material used. Eight male runners participated in the present study and used the shoes to run 500 km (10 × 50 km). The cushioning and energy return characteristics of each shoe were measured using an impact tester before and after each 50-km run. The results showed that as the running distance increased, the peak force of midsole materials changed with different patterns. Ethylene vinyl acetate and polyurethane-1 showed greater cushioning than polyurethane-2 over 500 km (ethylene vinyl acetate, 918.2–968.0 N; polyurethane-1, 909.6–972.9 N; polyurethane-2, 983.0–1105.6 N). Polyurethane-1 showed greater cushioning from 200 km to 300 km compared with 0 km (0 km, 972.9 ± 66.3 N; 200 km, 909.6 ± 61.2 N; 250 km, 921.9 ± 51.2 N; 300 km, 924.6 ± 51.9 N). The cushioning of ethylene vinyl acetate shoes was diminished after 500 km compared with that at 0 km (968.0 ± 25.9 N vs. 921.1 ± 20.1 N). Ethylene vinyl acetate resulted in greater energy returns than polyurethane. Both foam category and hardness/density affected the critical biomechanical properties of running shoes. 相似文献
20.
Repeated movement (RM) lunge that frequently executed in badminton might be used for footwear evaluation. This study examined the influence of single movement (SM) and RM lunges on the ground reaction forces (GRFs) and knee kinetics during the braking phase of a badminton lunge step. Thirteen male university badminton players performed left-forward lunges in both SM and RM sessions. Force platform and motion capturing system were used to measure GRFs and knee kinetics variables. Paired t-test was performed to determine any significant differences between SM and RM lunges regarding mean and coefficient of variation (CV) in each variable. The kinetics results indicated that compared to SM lunges, the RM lunges had shorter contact time and generated smaller maximum loading rate of impact force, peak knee anterior-posterior force, and peak knee sagittal moment but generated larger peak horizontal resultant forces (Ps < 0.05). Additionally, the RM lunges had lower CV for peak knee medial-lateral and vertical forces (Ps < 0.05). These results suggested that the RM testing protocols had a distinct loading response and adaptation pattern during lunge and that the RM protocol showed higher within-trial reliability, which may be beneficial for the knee joint loading evaluation under different interventions. 相似文献