首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
This study investigated the normal and parallel ground reaction forces during downhill and uphill running in habitual forefoot strike and habitual rearfoot strike (RFS) runners. Fifteen habitual forefoot strike and 15 habitual RFS recreational male runners ran at 3 m/s ± 5% during level, uphill and downhill overground running on a ramp mounted at 6° and 9°. Results showed that forefoot strike runners had no visible impact peak in all running conditions, while the impact peaks only decreased during the uphill conditions in RFS runners. Active peaks decreased during the downhill conditions in forefoot strike runners while active loading rates increased during downhill conditions in RFS runners. Compared to the level condition, parallel braking peaks were larger during downhill conditions and parallel propulsive peaks were larger during uphill conditions. Combined with previous biomechanics studies, our findings suggest that forefoot strike running may be an effective strategy to reduce impacts, especially during downhill running. These findings may have further implications towards injury management and prevention.  相似文献   

2.
A two‐dimensional, dynamic bioengineering model of the lower limbs was developed in order to estimate muscle and joint forces present during running at 4.5 m s ‐1. Data were collected from four subjects using a force platform and cine film. Individual X‐rays and anthropometric data from the lower limbs were utilized to produce accurate bone models of the subjects’ legs. Electromyographic verification of the model was undertaken while a runner was undergoing treadmill running at 4.5 m s‐1. Results indicate that peak muscle forces of 22 times subject body weight (22 BW) could be present in the quadriceps muscle group and 7 BW in the gastrocnemius. The anterior shin muscles were found to be active for the first 9% of stance phase only, and compressive loads of 33 BW were found in the knee joint. The relationship between these nigh forces in the lower limbs and running related injuries is discussed.  相似文献   

3.
This study aimed to determine whether the fatigue induced by a mountain ultramarathon (MUM) led to changes in energy cost and kinematic during level and graded running. Pre- and post-race, 14 ultratrail runners ran on a level, uphill (5%) and downhill (5%) treadmill at 10 km · h?1. Kinematic data were acquired using a photocell system. Post-race, the downhill energy cost increased by 13.1% (< 0.001). No change was noted in level and uphill running. Duty factor and stride frequency were increased, whereas swing time, cycle time and stride length were decreased in all conditions (< 0.05). Contact time was increased and the rate of force generation was decreased only in the uphill and downhill conditions (< 0.05). Positive correlations were observed between performance time and the pre- to post-changes in the energy cost of level (= 0.52, = 0.04) and uphill running (= 0.50, = 0.04). MUM-induced fatigue resulted in physiological and spatiotemporal changes, though the response to fatigue varied considerably between running conditions. These changes resulted in a significant increment only in the downhill energy cost. Incorporating downhill locomotion in the training programmes of ultratrailers may help to improve performance-related physiological and biomechanical parameters.  相似文献   

4.
The aim of the present study was to evaluate the effects of a 12-week home-based strength, explosive and plyometric (SEP) training on the cost of running (Cr) in well-trained ultra-marathoners and to assess the main mechanical parameters affecting changes in Cr. Twenty-five male runners (38.2?±?7.1 years; body mass index: 23.0?±?1.1?kg·m?2; V˙O2max: 55.4?±?4.0 mlO2·kg?1·min?1) were divided into an exercise (EG?=?13) and control group (CG?=?12). Before and after a 12-week SEP training, Cr, spring-mass model parameters at four speeds (8, 10, 12, 14?km·h?1) were calculated and maximal muscle power (MMP) of the lower limbs was measured. In EG, Cr decreased significantly (p?<?.05) at all tested running speeds (?6.4?±?6.5% at 8?km·h?1; ?3.5?±?5.3% at 10?km·h?1; ?4.0?±?5.5% at 12?km·h?1; ?3.2?±?4.5% at 14?km·h?1), contact time (tc) increased at 8, 10 and 12?km·h?1 by mean +4.4?±?0.1% and ta decreased by ?25.6?±?0.1% at 8?km·h?1 (p?<?.05). Further, inverse relationships between changes in Cr and MMP at 10 (p?=?.013; r?=??0.67) and 12?km·h?1 (p?<?.001; r?=??0.86) were shown. Conversely, no differences were detected in the CG in any of the studied parameters. Thus, 12-week SEP training programme lower the Cr in well-trained ultra-marathoners at submaximal speeds. Increased tc and an inverse relationship between changes in Cr and changes in MMP could be in part explain the decreased Cr. Thus, adding at least three sessions per week of SEP exercises in the normal endurance-training programme may decrease the Cr.  相似文献   

5.
Abstract

The objective of this study was to compare the three-dimensional lower extremity running kinematics of young adult runners and elderly runners. Seventeen elderly adults (age 67–73 years) and 17 young adults (age 26–36 years) ran at 3.1 m · s?1 on a treadmill while the movements of the lower extremity during the stance phase were recorded at 120 Hz using three-dimensional video. The three-dimensional kinematics of the lower limb segments and of the ankle and knee joints were determined, and selected variables were calculated to describe the movement. Our results suggest that elderly runners have a different movement pattern of the lower extremity from that of young adults during the stance phase of running. Compared with the young adults, the elderly runners had a substantial decrease in stride length (1.97 vs. 2.23 m; P = 0.01), an increase in stride frequency (1.58 vs. 1.37 Hz; P = 0.002), less knee flexion/extension range of motion (26 vs. 33°; P = 0.002), less tibial internal/external rotation range of motion (9 vs. 12°; P < 0.001), larger external rotation angle of the foot segment (toe-out angle) at the heel strike (?5.8 vs. ?1.0°; P = 0.009), and greater asynchronies between the ankle and knee movements during running. These results may help to explain why elderly individuals could be more susceptible to running-related injuries.  相似文献   

6.
目的:通过EMG记录分析跑台跑和场地跑肌肉用力情况特征,比较这两种状态跑时肌肉用力方式的各自特点。方法:11名中长跑运动员,每名运动员分两天测试,随机让其以10 km/h、12 km/h、14 km/h、16 km/h、18 km/h的速度在场地和跑台(0%、5%、10%坡度)运动6min,每种速度跑之间间歇10min。使用便携式Megawin ME-6000肌电仪记录其下肢肌群(臀大肌、股外侧肌、股二头肌、腓肠肌内侧头、胫骨前肌)EMG变化情况。结果表明:在肌肉用力方面,5%坡度的跑台跑可以模拟场地跑,而10%坡度的跑台跑则可以给予下肢肌群更强的刺激,以满足训练的需要;跑台跑时,胫骨前肌需要比在场地跑时动员更多的运动单位参与工作,而跑台的坡度和速度增加对动员更多的运动单位影响不大。  相似文献   

7.
The purpose of this study was to determine the effects of a verbal and visual feedback system on running technique, ratings of perceived exertion (RPE), and running economy. Twenty‐two female novice runners were randomly assigned to experimental (n = 11) and control (n = 11) groups. The experimental subjects received verbal and visual feedback concerning their running technique prior to and during each training run. Training involved 15 20‐min treadmill running sessions over a 5‐week period. The control group adhered to the same training routine but did not receive feedback concerning their running technique. High‐speed (100 Hz) photography was used to collect biomechanical data. A submaximal oxygen consumption test and Borg's RPE scale were used to collect data concerning running economy and perceived exertion, respectively. Statistical analysis using ANCOVA revealed that the proposed feedback system had a significant (P < 0.01) effect on the experimental group's running technique by affecting the following desired changes relative to the control group: greater relative stride lengths, shorter support time, greater ankle dorsiflexion during support and greater knee flexion during support and non‐support. There were no significant differences between the groups in submaximal VO2 or RPE. The results of this study suggest that verbal and visual feedback are effective means of eliciting modifications in running style in female novice runners. The link between modifications in running style and improvements in running economy and perceived exertion remains unclear.  相似文献   

8.
Research has focused on parameters that are associated with injury risk, e.g. vertical acceleration. These parameters can be influenced by running on different surfaces or at different running speeds, but the relationship between them is not completely clear. Understanding the relationship may result in training guidelines to reduce the injury risk. In this study, thirty-five participants with three different levels of running experience were recruited. Participants ran on three different surfaces (concrete, synthetic running track, and woodchip trail) at two different running speeds: a self-selected comfortable speed and a fixed speed of 3.06 m/s. Vertical acceleration of the lower leg was measured with an accelerometer. The vertical acceleration was significantly lower during running on the woodchip trail in comparison with the synthetic running track and the concrete, and significantly lower during running at lower speed in comparison with during running at higher speed on all surfaces. No significant differences in vertical acceleration were found between the three groups of runners at fixed speed. Higher self-selected speed due to higher performance level also did not result in higher vertical acceleration. These results may show that running on a woodchip trail and slowing down could reduce the injury risk at the tibia.  相似文献   

9.
ABSTRACT

While foot orthoses are commonly used in running, little is known regarding biomechanical risk potentials during uphill running. This study investigated the effects of arch-support orthoses on kinetic and kinematic variables when running at different inclinations. Sixteen male participants ran at different inclinations (0°, 3° and 6°) when wearing arch-support and flat orthoses on an instrumented treadmill. Arch-support orthoses induced longer contact time, larger initial ankle dorsiflexion, maximum ankle eversion, and knee sagittal range of motion (RoM) (p < 0.05). As incline slopes increased, vertical impact peak and loading rate, stride length, and ankle coronal RoM decreased, but contact time, stride frequency, initial ankle dorsiflexion and inversion, maximum dorsiflexion, initial knee flexion, and ankle sagittal RoM increased (p < 0.05). Furthermore, knee sagittal RoM was lowest when running at an inclination of 3°. The interaction effect indicated that in arch-support condition, participants running at 6° induced higher maximum ankle eversion than running at 0° (p < 0.05), while no differences were found in flat orthosis condition. These findings suggest that the use of arch-support orthoses would influence running biomechanics that is related to injury risks. Running at higher inclination led to more alterations to biomechanical variables than at lower inclination.  相似文献   

10.
To assess the effectiveness of breast support previous studies monitored breast kinematics and kinetics, subjective feedback, muscle activity (EMG), ground reaction forces (GRFs) and physiological measures in isolation. Comparing these variables within one study will establish the key performance variables that distinguish between breast supports during activities such as running. This study investigates the effects of changes in breast support on biomechanical, physiological and subjective measures during running. Ten females (34D) ran for 10 min in high and low breast supports, and for 2 min bare breasted (2.8 m·s?1). Breast and body kinematics, EMG, expired air and heart rate were recorded. GRFs were recorded during 10 m overground runs (2.8 m·s?1) and subjective feedback obtained after each condition. Of the 62 variables measured, 22 kinematic and subjective variables were influenced by changes in breast support. Willingness to exercise, time lag and superio-inferior breast velocity were most affected. GRFs, EMG and physiological variables were unaffected by breast support changes during running. Breast displacement reduction, although previously advocated, was not the most sensitive variable to breast support changes during running. Instead breast support products should be assessed using a battery of performance indicators, including the key kinematic and subjective variables identified here.  相似文献   

11.
The aim of this study was to determine the influence of barefoot running on foot-strike patterns, eversion–inversion, running speed and vertical foot rotation in endurance runners. Eighty healthy recreational runners (age = 34.11 ± 12.95 years old, body mass index = 22.56 ± 2.65 kg · m?2) performed trials in shod/unshod running conditions on a treadmill at comfortable and competitive self-selected speeds. Data were collected by systematic observation of lateral and back recordings at 240 Hz. McNemar’s test indicated significant differences between shod/unshod conditions and foot strike at comfortable and competitive speeds (< 0.001). Speed was related to vertical foot rotation type for shod (< 0.01) and unshod conditions (< 0.05). Significant differences were found between shod/unshod conditions in foot rotation at comfortable running speeds (< 0.001) and competitive running speeds (< 0.01). No significant difference was found in inversion or eversion (≥ 0.05). In conclusion, the results suggest that running kinematics, in terms of foot-strike patterns and vertical foot rotation, differ between shod/unshod conditions, while the inversion or eversion degree remains unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号