共查询到20条相似文献,搜索用时 15 毫秒
1.
蒋明权 《第二课堂(小学)》2008,(1):20-26
数列是高中代数的重点内容之一.它既有函数特征,又能构成独特的递推关系;它既与函数、不等式、解析几何、二项式定理等有较紧密的联系,又有自己鲜明的特征.因此,它是历年高考考查的重点、热点和难点.同时,数列也是学习高等数学的基础.本期特刊登5篇关于数列的文章,供同学们学习参考. 相似文献
2.
在数列中除了等差数列和等比数列外。还有很多其它数列,它们的特点往往通过数列的递推公式给出.我们恰恰可以根据此递推公式构造出一个新数列,通过求新数列的通项公式或前,n项和或前,n项积来间接求出原来数列的通项公式.对于不同的递推公式,我们可以采用不同方法构造不同类型的新数列.下面给出几种常见的构造新数列方法. 相似文献
3.
在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比,公差)来求数列的通项公式。但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。而这些题目往往可以用递推公式构造出一个新数列.从而间接地求出原数列的通项公式。对于不同的递推公式,我们当然可以采用不同的方法构造不同类型的新数列。下面给出几种常见的求数列通项公式的方法。 相似文献
4.
用构造法求数列的通项公式 总被引:1,自引:0,他引:1
在数列中除了等差数列和等比数列外.还有很多其它数列,它们的特点是通过数列的递推公式给出,我们恰恰可以根据此递推公式构造出一个新数列,通过求新数列的通项公式或前n项和或前n项积来间接求出原来数列的通项公式,对于不同的递推公式,我们可以采用不同方法构造不同类型的新数列,下面给出几种常见的构造新数列的方法。 相似文献
5.
<正>求数列的通项公式是高中数学教学的重点和难点,其中求递推数列的通项公式是近年高考考查的热点之一.解决此类问题的一般方法是根据数列递推关系的结构特征,通过某种变换,使之构造、转化为新的数列来求数列的通项公式.以下结合历年高考题进行 相似文献
6.
7.
本文通过介绍构造等比数列或等差数列的几种类型,进而探究构造法在求递推数列通项公式的运用,以便更好的掌握递推数列通项公式的求法. 相似文献
8.
9.
10.
彭世金 《中学数学研究(江西师大)》2005,(4):29-30
给定数列{an},我们可得如下结论: 若数列{an 1-kan}(k≠0)是公比为l的等比数列,则数列{an 1-lan}是公比为k的等比数列. 相似文献
11.
已知数列{an}的递推关系式为an+1=f(an),若存在实数a使得f(a)=a,则a称为数列{an}的不动点,在递推式an+1=f(an)中若令an+1=an=x,则方程f(x)=x的解就是数列{an}的不动点,方程f(x)=xc叫做递推式aa+1=f(an)的特征方程.利用不动点,可将某些由递推关系所确定的数列转化为等差、等比数列.下面举例说明.1 an+1=pan+q(其中p、q为常数,p≠0,q≠0)型 相似文献
12.
在数列{an)中,若an+1=an(n∈N^*),则称数列{an)为常数列,即an=a1(常数)(n∈N^*).在求某些递推数列的通项公式时,若恰当地构造常数列,利用常数列的特性,常能获得简捷的解法. 相似文献
13.
14.
递推数列是指由任一项与它的前一项(或前几项)间的关系给出的递推公式所确定的数列,等差数列和等比数列是最基本的递推数列.递推数列基本问题之一是由递推关系求通项公式.下面是几种常见的用构造等比数列法求通项的递推数列. 相似文献
15.
高中数学主要学习了等差数列和等比数列,但在平时的习题中,往往碰到的不只是这两类数列,所以有时需要用构造法将其转化为等差数列或等比数列. 相似文献
16.
数列是高中数学的重要知识,也是高考考查的重点,而求递推数列的通项公式问题,多年来一直是高考久考不衰的热点题型.尤其是近年来全国高考试卷十分明显,直接求此类问题的通项公式,许多学生常感到困惑不解,有时更是束手无策,其实此类问题可通过变形,转化为等差或等比数列,使问题得到解决. 相似文献
17.
18.
徐加生 《数理化学习(高中版)》2013,(4):7-8
已知数列的递推公式,求其通项公式是数列中重要的题型之一,在近年的高考试卷中也经常出现此类题型,解决这个问题除验算—猜想—证明的方法外;利用公式的变形构造一个新数列来求解也是重要的手段,下面通过例题分析阐述常用的变形方法,供参考. 相似文献
19.
20.
新教材第一册 (上 )第 1 1 3页有这样一段内容“象上面这样 ,如果已知数列 {an}的第 1项 (或前几项 ) ,且任一项 an 与它的前一项an- 1 (或前几项 )间的关系可以用一个公式来表示 ,那么这个公式就叫做这个数列的递推公式 .递推公式也是给出数列的一种方法 .”在旧教材中相关的内容只在习题 3- 1 - 4中出现 .显然递推数列在教学内容中的地位被提升 ,加以选用选修 ( )教材的学生不学数学归纳法 ,利用递推关系求数列的通项公式更应得到重视 .事实上 ,去年高考中已出现了这类试题 .例 1 若数列 {an}中 ,a1 =3且 an+1 =a2n,则数列的通项公式是 … 相似文献