首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
数列是高中代数的重点内容之一.它既有函数特征,又能构成独特的递推关系;它既与函数、不等式、解析几何、二项式定理等有较紧密的联系,又有自己鲜明的特征.因此,它是历年高考考查的重点、热点和难点.同时,数列也是学习高等数学的基础.本期特刊登5篇关于数列的文章,供同学们学习参考.  相似文献   

2.
在数列中除了等差数列和等比数列外。还有很多其它数列,它们的特点往往通过数列的递推公式给出.我们恰恰可以根据此递推公式构造出一个新数列,通过求新数列的通项公式或前,n项和或前,n项积来间接求出原来数列的通项公式.对于不同的递推公式,我们可以采用不同方法构造不同类型的新数列.下面给出几种常见的构造新数列方法.  相似文献   

3.
许鹤翎 《考试周刊》2010,(21):74-75
在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比,公差)来求数列的通项公式。但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。而这些题目往往可以用递推公式构造出一个新数列.从而间接地求出原数列的通项公式。对于不同的递推公式,我们当然可以采用不同的方法构造不同类型的新数列。下面给出几种常见的求数列通项公式的方法。  相似文献   

4.
用构造法求数列的通项公式   总被引:1,自引:0,他引:1  
在数列中除了等差数列和等比数列外.还有很多其它数列,它们的特点是通过数列的递推公式给出,我们恰恰可以根据此递推公式构造出一个新数列,通过求新数列的通项公式或前n项和或前n项积来间接求出原来数列的通项公式,对于不同的递推公式,我们可以采用不同方法构造不同类型的新数列,下面给出几种常见的构造新数列的方法。  相似文献   

5.
<正>求数列的通项公式是高中数学教学的重点和难点,其中求递推数列的通项公式是近年高考考查的热点之一.解决此类问题的一般方法是根据数列递推关系的结构特征,通过某种变换,使之构造、转化为新的数列来求数列的通项公式.以下结合历年高考题进行  相似文献   

6.
7.
本文通过介绍构造等比数列或等差数列的几种类型,进而探究构造法在求递推数列通项公式的运用,以便更好的掌握递推数列通项公式的求法.  相似文献   

8.
数列因容易与函数、不等式等知识综合,已成为高考命题的好素材,是考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法的理想载体.文章主要研究利用待定系数法构造辅助数列求解递推数列通项公式的方法.  相似文献   

9.
一般地,若数列{αn}的连续若干项之间满足递推关系断αn=f(αn-1,αn-2,…,an-k),由这个递椎关系及&个初始值确定的数列。叫做递推数列.递推数列的重难点问题是求通项,而求递推数列通项的主要的思路是转化为等差数列或等比数列,其中基本方法有:叠加法;迭乘法;转化为等差、等比数列求通项法;归纳——猜想——证明法等.  相似文献   

10.
给定数列{an},我们可得如下结论: 若数列{an 1-kan}(k≠0)是公比为l的等比数列,则数列{an 1-lan}是公比为k的等比数列.  相似文献   

11.
已知数列{an}的递推关系式为an+1=f(an),若存在实数a使得f(a)=a,则a称为数列{an}的不动点,在递推式an+1=f(an)中若令an+1=an=x,则方程f(x)=x的解就是数列{an}的不动点,方程f(x)=xc叫做递推式aa+1=f(an)的特征方程.利用不动点,可将某些由递推关系所确定的数列转化为等差、等比数列.下面举例说明.1 an+1=pan+q(其中p、q为常数,p≠0,q≠0)型  相似文献   

12.
在数列{an)中,若an+1=an(n∈N^*),则称数列{an)为常数列,即an=a1(常数)(n∈N^*).在求某些递推数列的通项公式时,若恰当地构造常数列,利用常数列的特性,常能获得简捷的解法.  相似文献   

13.
14.
递推数列是指由任一项与它的前一项(或前几项)间的关系给出的递推公式所确定的数列,等差数列和等比数列是最基本的递推数列.递推数列基本问题之一是由递推关系求通项公式.下面是几种常见的用构造等比数列法求通项的递推数列.  相似文献   

15.
高中数学主要学习了等差数列和等比数列,但在平时的习题中,往往碰到的不只是这两类数列,所以有时需要用构造法将其转化为等差数列或等比数列.  相似文献   

16.
数列是高中数学的重要知识,也是高考考查的重点,而求递推数列的通项公式问题,多年来一直是高考久考不衰的热点题型.尤其是近年来全国高考试卷十分明显,直接求此类问题的通项公式,许多学生常感到困惑不解,有时更是束手无策,其实此类问题可通过变形,转化为等差或等比数列,使问题得到解决.  相似文献   

17.
数列是高中数学的重要内容,求递推数列的通项是高考的热点之一.其主要方法有归纳、累和、累积、换元、取倒数、待定系数等方法.下面通过对几个例题的解析分别介绍这几种方法.例1①已知数列{an}满足a1=1,an+1=an+3,求通项;②已知数列{bn}满足b1=1,bn+1=2bn,求通项.分析:本例①为等差数列,②为等比数列,可用归纳法或迭代的方法求出其  相似文献   

18.
已知数列的递推公式,求其通项公式是数列中重要的题型之一,在近年的高考试卷中也经常出现此类题型,解决这个问题除验算—猜想—证明的方法外;利用公式的变形构造一个新数列来求解也是重要的手段,下面通过例题分析阐述常用的变形方法,供参考.  相似文献   

19.
数列的通项是数列的核心,求递推数列的通项公式是高考考查的热点.通常,已知递推公式,求数列的通项公式有迭代法、累加法、累乘法、构造法等几种方法.本文从常见的几类递推数列切入,将几种方法作探讨与总结,希望对同学们能够有所帮助.  相似文献   

20.
新教材第一册 (上 )第 1 1 3页有这样一段内容“象上面这样 ,如果已知数列 {an}的第 1项 (或前几项 ) ,且任一项 an 与它的前一项an- 1 (或前几项 )间的关系可以用一个公式来表示 ,那么这个公式就叫做这个数列的递推公式 .递推公式也是给出数列的一种方法 .”在旧教材中相关的内容只在习题 3- 1 - 4中出现 .显然递推数列在教学内容中的地位被提升 ,加以选用选修 ( )教材的学生不学数学归纳法 ,利用递推关系求数列的通项公式更应得到重视 .事实上 ,去年高考中已出现了这类试题 .例 1 若数列 {an}中 ,a1 =3且 an+1 =a2n,则数列的通项公式是 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号