首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(2013年波罗的海奥林匹克数学竟赛)已知x,y,z,是正数,求证(x3/y2+z2)+)(y3/z2+x2)+(z3/x2+y2)≥(x+y+z/2)。本文给出它的推广:已知n个正数:a1,a2,a3…an,求证:(a1n/a2n-1)+(a2n/a3n-1+a4n-1+…ann-1+a1n-1)+…+(an-1n/ann-1)+(a1n-1+a2n-1)…+(ann/a1n-1+a2n-1…an-1n-1)≥(a1+a2+…+an/n-1).  相似文献   

2.
名题有如一丛丛绚丽多姿,引人入胜的奇葩装点着繁花似锦的数学百花园.1988年"友好杯"数学竞赛中就有这样一道试题,凭着她的优美的外形,丰富的内涵,深刻的结果成为数学中的名题,让无数数学爱好者为之赞叹,为之浮想联翩.笔者近日再次品味这道历久弥香的佳题时,突发奇想,获得了她的一  相似文献   

3.
在文[1]中,作者提出并探讨了一个关于三角形内角的不等式:问题1 在锐角△ABC中,有∑1/(sin 2A)≥∑1/(sin A). ①当且仅当△ABC 为正三角形时等号成立.笔者通过思考与探索,得出了较不等式①强的结论:  相似文献   

4.
文[1]给出了一对非常优美的姐妹不等式设a,b,c是正数,且a+b+c=1,则有(1/(b+c)-a)(1/(c+a)-b)(1/(a+b)-c)≥(7/6)~3(1)当且仅当a=b=c=1/3时取等号,  相似文献   

5.
问题已知a,b∈R~+,x,y∈R,且a+b=1,求证:ax~2+by~2≥(ax+by)~2.解法1作差比较简单明了ax~2+by~2-(ax+by)~2=ax~2+by~2-a~2x~2-b~2y~2-2abxy=a(1-a)x~2-2abxy+b(1-b)y~2=ab(x~2-2xy+y~2)=ab(x-y)~2≥0.解法2代换在前作差在后因为a+b=1,令T=(a+b)(ax~2+by~2)-(ax+by)~2=abx~2+aby~2-2abxy=ab(x-y)~2≥0.评析"作差法"是证明不等式的一种最基本的方法,巧用作差法是我们解决不等式证明问题的一种行之有效的途径,如果应用得恰当,能切中要害,问题  相似文献   

6.
柯西不等式:(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)(当且仅当b1/a1=b2/a2=b3/a3=…=bn/an时,等号成立)是一个重要的不等式,其结构和谐、形式优美、应用广泛,是高考考查的热点.本文举例说明柯西不等式在求值、求最值、证明不等式及求参数的范围等方面的应用.  相似文献   

7.
基本不等式设a≥0,b≥0,则a+b/2≥√ab(当且仅当a=b时等号成立).最值原理设x>0,y>0.(1)若x+y=S(定值),则当且仅当x=y时,xy取得最大值S2/4;(2)若xy=P(定值),则当且仅当x=y时,x+y取得最大值2√P.  相似文献   

8.
<正>不等式是高中阶段的重要知识点之一,不等式的最值问题的解法为高中生思维方式的拓展提供一条训练捷径.本文介绍一道易错题的多条解题路径,供同学们参考.题目设a,b,x,y∈R,且满足a2+b2=p2,x2+y2=q2(p>0,q>0,p≠q),求ax+by的最大值.常见错误因为a2+b2=p2,x2+y2=q2(p>0,q>0),所以  相似文献   

9.
<正>2014年上海高考理科第13题:某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分.若E(ξ)=4.2,则小白得5分的概率至少为.1解法探究解设小白得i分的概率为pi(i=1,2,3,4,5),因为E(ξ)=4.2,所以p1+2p2+3p3+4p4+5p5=4.2,又p1+p2+p3+p4+p5=1,代人得p2+2p3+3p4+4p5=  相似文献   

10.
11.
近几年,以教材例题为背景的高考试题常考常新。这类试题本身难度不大,但同学们得分普遍较低。究其原因,主要是大家对教材内容不够熟悉,知识记忆含糊,导致丢分严重。下面通过对课本一道例题的探究,介绍不等式证明的一些常用方法,供同学们学习时参考。  相似文献   

12.
<正>《数学通报》2014年9月号问题2201如下:问题2201[1]已知a、b、c∈R+,且满足a2/1+a2+b2/1+b2+c2/1+c2=1,求证:abc≤2/4.本文从变元的个数与指数出发,利用均值不等式给出上述条件不等式的一个推广.推广已知n∈N+,n≥2,k∈N+,ai∈n  相似文献   

13.
14.
15.
16.
17.
1问题呈现设a,b,c为正实数,且a+b+c=3,求证:√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.2问题的证明与推广证明:由已知条件结合均值不等式可得√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b=√ab/3+a+√bc/3+b+√ca/3+c≤√ab/44√ a+√bc/44√ b+√ca/44√c=8√a3b4/2+8√b3c4/2+8√c3a4/2≤1+3a+4b/16+1+3b+4c/16+1+3c+4a/16=3+7 (a+b+c)/16=3+7×3/16=3/2,当且仅当a=b=c=1时取等号,则√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.  相似文献   

18.
19.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

20.
2008年同济大学自主招生有这样一道试题:在实数范围内求满足方程组(?)的实数x,y,z的值,对于学习过竞赛的同学来讲,利用柯西不等式解答会比较得心应手,其解答如下:由Cauchy不等式,39=-8x+6y-24z≤(-8)2+62+(-24)2(1/(-8)2+62+(-24)2·x2+y2+z2(1/x2+y2+z2=6761/676  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号