首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张容 《云南教育》2005,(23):38-39
等差数列的通项公式an=a1 (n-1)d与前n项和公式sn=na1 n(n-1)d/2可以看作是定义域为N 的一次函二数和二次函数。根据等差数列的定义、直线方程、函数的图象和性质,很容易知道等差数列的通项公式、前n项和公式与几何的关系,并且可以利用它解答一些等差数列的题目。  相似文献   

2.
3.
题目 二次函数y=ax^2+bx+c(a≠0)的图象是抛物线,抛物线的顶点是(1,2),且抛物线还过点(3,0),那么不等式ax^2+bx+c&;gt;0的解是——.  相似文献   

4.
一般,教科书在每一个知识点后都有相配套的练习,这些练习题比较基础、简单,很多老师不愿意花时间在这些题目上,很多时候只是简单地套用公式,甚至报个答案匆匆了事.其实,这些练习题有其特殊的教学价值,教师若能细细品味、充分挖掘,不仅能够使学生巩固基础知识,还能开阔学生的眼界,从中体会数学的精彩.在等差数列部分的讲解中,我们经常会碰到如下一道题的教学:  相似文献   

5.
题目二次函数 y=ax~2+bx+c(a≠0)的图象是抛物线,抛物线的顶点是(-1,2),且抛物线还过点(-3,0),那么不等式 ax~2+bx+c>0的解是_____.思路1 由抛物线的顶点(-b/2a,4ac-b~2/4a)等条件,列出关于 a、b、c 的方程组,求出 a、b、c 的值,再解不等式.解法1(公式法)根据抛物线的顶点坐标公式,  相似文献   

6.
题目 已知数列{an}、{bn}中,an=an-1cosθ-bn-1sinθ,bn=an-1sinθ+bn-1cosθ,(n∈N^*,n〉1),其中a1=1,b1=tanθ,θ是常数,求数列{an}、{bn}的通项公式。  相似文献   

7.
8.
例如图1,在△ABC中,AB=AC=5,BC=6,D是AB上的动点,DE⊥AB交BC于E,  相似文献   

9.
10.
11.
题目:已知在Rt△ABC中。∠ACB=90°,AC=6,BC=8.[第一段]  相似文献   

12.
首项为a1,公差为d的等差数歹的通项公式是an=a1+(n-1)d,前n项的和是Sn=na1+(n(n-1))/2d.由此得(Sn)/n=a1+((n-1))/2d=a1+(n-1)1/2d,若令1/2d=d’,则得(Sn)/n=(S1)/1+(n-1)d’,这表明数列{(Sn)/n}是以(S1/1)为首项,公差为d’=1/2d的等差数列,于是我们可以从等差数列的  相似文献   

13.
<正>一题多解是从题的不同角度,不同侧面定位分析同一题的数量关系,用不同的方法求得相同结果的解题过程.一题多解,对于培养学生的发散思维能力,以及多角度分析问题和解决问题能力,达到举一反三能力有重要作用.下面给出一道题的4种不同解法,供大家参考.  相似文献   

14.
众所周知,等差数列{an}的通项公式an=a1 (n-1)d可变形写成:an=dn (a1-d),这个式子的几何意义是点列An(n,an)(n∈N )在直线y=dx (a1-d)上.  相似文献   

15.
姚建明 《高中生》2013,(21):26-27
数列是定义在正整数集或其子集上的特殊函数,具有函数的一些固有特征.我们借助相关函数的图像,可以动态地、直观地研究数列的性质,从而使解题思路更为明朗,方法更为优化.常见数列的图像1.公差d≠0的等差数列{an}将公差d≠0的等差数列{an}的通项公式an=a1+(n-1)d看成关于n的"一次函数",即an=dn+(a1-d),其图像是均匀分布在直线y=dx+(a1-d)上的  相似文献   

16.
题 计算:1/2+(1/2)^2+(1/2)^3+(1/2)^4+(1/2)^5+(1/2)^6+(1/2)^7+(1/2)^8+(1/2)^9. 这道题如果用高中的知识,就是一道等比数列求和问题,按照等比数列求和公式可以求出结果.可是初中学生没有学过等比数列,更不会利用等比数列求和公式去计算.这里我们采用数形结合的思想,用几何的知识巧解这道题.  相似文献   

17.
试题(2020年11月衢州、丽水、湖州三地市教学质量检测第20题)已知正项数列{an}的前n项和为Sn,且a1=1,Sn+1+Sn=a2n+1(n∈N*).(Ⅰ)求a2,a3的值,并写出数列{an}的通项公式.  相似文献   

18.
题目如图1,已知E为正方形ABCD的边BC延长线上一点,EF⊥AE,且与∠BCD的外角平分线CF交于F,试判断AEF的形状,并证明你的结论.一、利用全等三角形的性质解法1如图1,延长BA至E′,使AE′=CE,连结EE′.∵四边形ABCD为正方形,∴BA AE′=BC CE,即BE′=BE.∴∠E′=∠BEE′=45°.又∵CF平分∠DCE,∴∠E′=∠FCE=45°.∵∠1 ∠2=∠3 ∠2,∴∠1=∠3,∴∠E′AE=∠CEF.∴E′AE≌CEF.∴解法AE2=EF,即AEF为等腰直角三角形.如图1,同上得∠E′EB=45°.又∠FCE=45°,∴∠FGE=90°.∴∠E′EF ∠5=90°.∵∠4 ∠E′EF=90°,…  相似文献   

19.
在一本教辅材料中有如下一道几何题:设AC,CE是正六边形ABCDEF的两条对角线,点M,N分别内分AC,CE使AM:AC=CN:CE=r。如果B,M,N三点共线,求r。  相似文献   

20.
例1设等差数列{an}满足3a8=5a13,且a1〉0,Sn为其前n项之和,则Sn(n∈N^n)中最大的是( )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号