首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在组合数恒等式中,有一类可以通过对等式x~α(1+x~β)~n=sum form r=0 to n(C_n~rx~(a+rB)),(1+x)~n=sum form r=0 to n(C_n~rx~r)求导或积分而得,方法简便,且能揭示其数量之间的一般关系。兹举例如下: 1、[(1+x)~n]~′=(C_n~o+C_n~1X+C_n~2X~2+C_n~3X~4+…+C_n~rX~r+…+C_n~nX~n)′,  相似文献   

2.
由二项式定理:(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+…+C_n~nb~n,(a-b)~n=C_n~0a~n-C_n~1a~(n-1)b+…+(-1)~nC_n~nb~n相加可得 (a+b)~n+(a-b)~n =2(C_n~ca~n+C_n~2a~(n-2)b~2+C_n~4a~(n-4)b~4+…)。(*)合理利用(*)式,可解答几类难度较大的问题。  相似文献   

3.
组合恒等式证明问题,一般难度较大,学生往往不易掌握。下面就来谈谈组合恒等式证明的几种方法。 1.置换法。在公式(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…+C_n~ra~(n-r)b~r+…+C_n~nb~n中,适当地选择某个数来置换a和b,原恒等式即可得证。例1.求证:①2~n-C_n~12~(n-1)+C_n~22~(n-2)+…+(-1)~(n-1)C_n~(n-1)2+(-1)~n=1; ②3~n-C_n~13~(n-1)+C_n~23~(n-2)+…+(-1)~(n-1)C_n~(n-1)3+(-1)~n=2~n。  相似文献   

4.
关于组合恒等式的证明方法大体可归纳为如下一些: 一、在二项展开式中直接代入特别值而得组合恒等式二项展开式为 C_n~0 C_n~1x C_n~2x~2 … C_n~nx~n=(1 x)~n,其中 C_n~k=(n(n-1)…(n-k 1))/(k!)=(n!)/((n-k)!k!),k≤n,且规定C_n~0=1。若令x=1得 C_n~0 C_n~1 C_n~2 … C_n~n=2~n.(1) 令x=-1得 C_n~0-C_n~1 C_n~2-… (-1)~nC_n~n=0,(2)或 C_n~0 C_n~2 …=C_n~1 C_n~3 … *) (3) *)本  相似文献   

5.
文[1]提出用待定系数法求sum from j=0 to n (j~K C_n~5)的表达式,但该法不太理想,本文介绍另外两种方法,供大家参考。一、导数法展开(1+x)~n,我们有恒等式 C_n~0+C_n~1x+C_n~2x~2+…+C_n~nx~n=(1+x)~n (1) 在(1)式中对x求导得 C_n~1+2C_n~2x+3C_n~3x~2+…+nC_n~nx~(n-1)=n·(1+x)~(n-1) (2) 在(2)式两端乘以x,然后再对x求导得  相似文献   

6.
现行高三数学中学到了二项式定理:(a+b)~n=C_n~0a~n+a_n~1a~(n-1)b+C_n~2a~(n-2)b~2+……+C_n~nb~n。若令a=1,b=1,代入上式,就得到(1+1)~n=C_n~0+C_n~1+C_n~2+……+C_n~n,这是全组合公式,即从n个元素中一个也不取,取一个、取二个、……、取n个元素的组合总数,那么(1+2)~n的展开式的组合原理是什么呢?或者说,它的数学模型是什么?下面我们先看一个具体问题。  相似文献   

7.
<正>通过学习我们知道:1.(a+b)~2=a~2+2ab+b~22.(a+b)~3=a~3+3a~2b+3ab~2+b~33.(a+b)~n=a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…C_n~(n-1)ab~(n-1)+b~n这是二项式定理,在学习中我发现,关于(a+b)~n的展开式也可以给出如下证明:(a+b)~n是n个(a+b)相乘,属于多项式乘多项式的问题,每个(a+b)在相乘  相似文献   

8.
一九八五年全国高等学校招生统一考试数学(理工农医类)第二(4)题是这样一道题:设(3x-1)~6=a_6x~6 a_5x~5 a_x~4 a_3x~3 a_2x~2 a_1x a_0,求a_6 a_5 a_4 a_3 a_2 a_1 a_0的值。在阅卷中发现不少考生在草稿上是通过二项展开公式去求的。这样即便解对,亦非良法。事实上,我们只要对试题稍作分析便知,若在题设中令x=1,则其右边便是所要求值的代数式,而左边为常数2~6,即为所求。这种思想方法其实也正是教材所要求掌握的。高中代数第三册p75例1、例2在证明恒等式C_n~0 C_n~1 C_n~2 … C_n~n=2~n及C_n~0 C_n~2 C_n~4 …=C_n~1 C_n~3 C_n~5 …=2~(n-1)时,就是由对二项展开式中的a、b巧赋特殊值得到的。类似地,  相似文献   

9.
一、用导数例1.求证:C_n~1+2C_n~2+3C_n~3+…+nC_n~n=n·2~(n-1) 证将(1+x)~n=C_n~0+C_n~1x+C_n~2x~2+…+C_n~nx~n两边对x求导数再命x=1  相似文献   

10.
我们知道,由二项式定理 (a b)~n=a~n C_1~na~(n-1)b … C_n~(n-1)ab~(n-1) b~n可得 (a b)~n=aM_1 b~n; (a b)~n=a~2M_2 nab~(n-1) b~n; (a b)~n=a~n abM_i b~n; …………其中,M_i(i=1,2,3,…)是整式。利用上述性质可以证明一类多项式的整除问题。兹举例如下(本文中的n均为自然数): 例1 求证(x 1)~(2n 1) x~(n 2)能被x~2 x 1整除。  相似文献   

11.
(a+b)~n展开式的二项式系数C_n~0、C_n~1、C_n~2…C_n~n从左至右先逐渐递增到最大值C_n~(n/2)(n为偶数)[或C_n~(n-1/2)、C_n~(n+1/2)(n为奇数)]时再逐渐减小,且有C_n~r=C_n~(n-r)(r=0,1,2,…n)。利用这个性质可以解组合不  相似文献   

12.
关于因式分解的常用方法,中学课本中已作了介绍。本文要探讨的是根据题目的特征,运用比较特殊的方法,进行因式分解的问题。例1 在复域内分解: (x+1)(x+2)(x+3)(x+6)-3x~2 解原式=(x~2+7x+6)(x~2+5x+6)-3x~2推敲上式的特征,可知若令y=x~2+6x+6,原式就化为: (y+x)(y-x)-3x~2 =y~2-4x~2=(y+2x)(y-2x) =(x~2+8x+6)(x~+4x+6) =(x+4-10~(1/2))(x+4+10~(1/2)) (x+2-(2~(1/2))i)(x+2-(2~(1/2))i) 例2分解:(ab+1)(a+1)(b+1)+ab 解原式即(ab+1)[ab+1+a+b]+ab,若令(ab+1)=A,可得: 原式=A(A+a+b)+ab =A~2+(a+b)A+ab=(A+a)(A+b)  相似文献   

13.
(x 1)~n(x≠1)当n=0,1,2,3…n的展开式为: (x 1)~0=1 (x 1)~1=x 1 (x 1)~2=x~2 2x 1 (x 1)~3=x~3 3x~2 3x 1 (x 1)~4=x~4 4x~3 6x~2 4x 1 (x 1)~5=x~5 5x~4 10x~3 10x~2 5x 1 (x 1)~6=x~6 6x~5 15x~4 20x~3 … (x 1)~7=x~7 7x~6 21x~5 35x~4 … (x 1)~8=x~8 8x~7 28x~6 56x~5 … (x 1)~n=C_n~0x~n … C_n~mx~(n-m) … 1 以上面展开式中斜上方向上的各项构成新的多项式:  相似文献   

14.
关于二项式定理的证明,课本上用的是数学归纳法。数学教师也未提供其它的证明方法。经过探索,现提供一种新的简捷证法。定理: (a+b)~n=C_n~0+C_n~(n-1)b+···+C_n~ka~(n-k)b~k+···+C_n~(n-1)ab~(n-1)+C_n~nb~n (n∈)N  相似文献   

15.
题目设二次函数y=(a+b)x~2+2cx-(a-b)。其中a、b、c分别为ΔABC的三边,当x=-(1/2)时,二次函数的最小值为-(a/2)。试判断ΔABC的形状。(1994年甘肃省中考试题) 解由题意可设二次函数的解析式为 y=(a+b)(x+1/2)~2-(-(a/2)) =(a+b)x~2+(a+b)x+(b-a/4), 又∵y=(a+b)x~2+2cx-(a-b), 比较系数,得{a+b=2c, {b-a/4=-(a-b).解得 a=b=c。  相似文献   

16.
高中数学学过 C_n~0+C_n~1+C_n~2+…+C_n~n=2~n, C_n~1+2C_n~2+…+nC_n~n=n·2~(n-1), 即sum from j=0 to n C_n~j=2~n,(1) sum from j=0 to n jC_n~j=n·2~(n-1)。(2)  相似文献   

17.
在初二分式方程的教学过程中,曾碰到习题:解分式方程除了用换元法解外,也可用去分母法解,即得到2x~4-7x~3 3x~2 5x 1=0,这种方法将涉及到一元四次多项式的因式分解问题,一般我们可用待定系数法:设2x~4-7x~3 3x~2 5x 1=(a_1x~2 b_1x c_1)(a_2x~2 b_2x c_2)=a_1a2x4 (a1b2 a2b1)x3 (a1c2 b1b2 c1a2)x2 (b1c2 b2c1)x c1c2比较系数得方程组:由a1a2=2=1×2=(-1)×(-2),由a1,a2的对称性不妨令:a1=1a2=2或a1=-1a2=-2由c1c2=1可得:c1=1c2=1或c1=-1c2=-1由(**)和(***)适当组合,再代入(*)中其余方程.得解:要从a1a2=2和c1c1=1的因子…  相似文献   

18.
利用增量代换来解答和处理问题的方法叫做增量代换法。增量代换法是中学教学中的一种重要方法,在解决众多的数学问题中表现出奇妙的作用。一、解方程例1 解方程 (2x~2-3x+7)~(1/2)-(2x~2-3x+2)~(1/2)=1。解;由此方程的特征,可设 (2x~2-3x+7)~(1/2)=1+a, (1)则(2x~2-3x+2)~(1/2)=a(a≥0)。 (2)(1)~2-(2)~2得a=2。∴ (2x~2-3x+2)~(1/2)=2。解得 x_1=2,x_2=-1/2。经检验知,均为原方程的根。二、证不等式例2 设a,b,m∈P~+,且aa/b。证明:由已知不妨设b=a+a(a>0),则  相似文献   

19.
对于两个任意的实数a与b,总有a=a+b/2+a-b/2,b=a+b/2-a-b/2成立,令a+b/2=s,a-b/2=t,则a=s+t,b=s-t,这种把两个毫无关联的量,分别表示成另两个量的和与差形式的方法,不妨称之为二元代换法。因为有a+b=2s,a-b=2t,ab=s~2-t~2,a~n+b~n=2(C_N~0s~n+C_n~2s~(n-2)t~2+C_n~4s~(n-4)t~4+…),故二元代换法既能改变式子结构,又能使加法、减法、乘法、乘方等运算得到简化,借助于此,解题可另辟新径。  相似文献   

20.
1988年全国高中数学联赛第一试最后一题:已知a、b为正实数,且1/a 1/b=1,试证对每一个n∈N, (a b)~n-a~n-b~n≥2~(2n)-2~(n 1)(*) 这个不等式从形式上看较难证明,经过研究,笔者发现它有许多证法,择其简单的四种介绍如下: 证一应用二项式定理,得(a b)~n-a~n-b~n=C_n~1a~(n-1)b C_n~2a~(n-2)b~2 … C _n~(n-1)ab~(n-1) (1)根据组合数性质C_n~k=C_n~(n-k),由(1)得(a b)~n-a~n-b~n=C_n~1ab~(n-1) C_n~2a~2b~(n-2) 十… C_n~(n-1)a~(n-1)b (2)(1) (2)后两边除以2得  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号