首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[定理] m个连续整数的连乘积能被m!整除。证:设m个连续整数中最大的一个为n。当n≥m时,C_n~m=(n(n-1)…(n-m+1))/m!是整数,故命题成立。当n相似文献   

2.
连续整数具有如下简单的性质.(1)两个连续整数之积必为偶数;(2)两个连续整数之积的末位是0,2,6中的一个;(3)三个连续整数之积能被6整除;(4)四个连续整数之积与1的和必为某个  相似文献   

3.
现行高中《代数》下册 (必修 )课本给出了组合数公式 :Cmn =n(n - 1) (n - 2 )… (n -m 1)m !,其中 ,n ,m∈N ,并且m≤n .由于Cmn 是整数 ,从公式便得到 ,n(n - 1) (n -2 )… (n -m 1)能被m !整除 ,即得下面的真命题 .命题 1 m个连续正整数的积能被m !整除 .命题 1中去掉“正整数”条件的限制 ,便得到 ,m个连续整数的积能被m !整除 ,即m !|n(n - 1) (n- 2 )… (n -m 1) ,其中n∈Z ,m∈Z .这一结论是否成立呢 ?回答是肯定的 .这是因为 :( 1)当n ,(n - 1) ,(n - 2 ) ,… ,(n -m 1)都是正整数…  相似文献   

4.
排列组合是初等数学的重点内容之一。推导组合数公式的传统方法,都是根据排列与组合的联系,利用排列数公式来推导组合数公式。实际上,我们完全可以不借助于排列数公式而独立的建立组合数公式;任意m个连续自然数之积,一定能被m!整除,这是学过排列组合的同学不难理解的,但是,m-1个连续自然数之积在满足一定条件后,也能被m!整除,这一点也许同学们并没有注意到。熟悉这些内容,对于进一步学习,研究有关排列组合问题是十分有益的。  相似文献   

5.
<正> 一个整数A整除另一个整数B,就是用A去除以B所得的余数为零,即:B=K·A(其中K为整数)。而当B=K·A时(A、B、K均为整数),对于不同的A,B中的各位数字及其它性质与A又有着特殊的关系;反过来,可以从这种特殊的关系中,较容易地判断出B是否能被A整除,从而避免冗繁的除法运算。这里给出整数整除整数的判别方法。 任何一个整数,要么可以表示为2n+1,即为奇数,要么可以表示为2~n,要么可以表示为2~K(2m+1),(其中n、K、m均为整数),后两者即为偶数。而研究整数,只须从这三方面入手即可。 定理1 能被奇数2n+1整除的整数10a+b(其中n、a为整数,b为一位整数)的特征是:这个数10a+b的末位数b以前的数字所表示的数a的5倍与b的n倍之差能被2n+1整除。反之亦然。即:若10a+b能被2n+1整除,则有5a-nb能被2n+1整除;若5a-nb能被2n+1整除,则有10a+b能被2n+1整除。  相似文献   

6.
问题若整数a,b,c,d,m使am3+bm2+cm+d能被5整除,且数d不能被5整除.试说明:总可以找到这样的整数n,使dn3+cn2+bn+a也能被5整除.解数m不可能被5整除.否则,设m能被5整除,则由am3+bm2+cm+d=m(am2+bm+c)+d知,数d也能被5整除,这与已知(d不能被5整除)矛盾.因此,数m可表示成5k+r的形式,其中k是某整数,r是小于5的正整数.当r等于1,2,3,4时,相应取n分别为1,3,2,4.这时,积mn被5除总是余1.设A=am3+bm2+cm+d,B=a+bn+cn2+dn3.由此二式消去d,得An3-B=a(m3n3-1)+bn(m2n2-1)+cn2(mn-1)=(mn-1)[a(m2n2+mn+1)+bn(mn+1)+cn2].因为mn-1能被5整除,即对所选的数n,差…  相似文献   

7.
一、目的要求 1.掌握整除、倍数和约数的概念,了解整除与除尽之间的联系与区别,掌握和、差、积及有余数除法的整除性定理。 2.理解一个数能被b整除的特征的概念,掌握能被2或5,5或25,8或125,9或3,以及7,11或13整除的数的特征,并能正确熟练地判断一个数能否被以上各数整除。 3.掌握最大公约数、最小公倍数、互质和几个数两两互质等概念,理解最大公约数及最小公倍数的性质定理。 4.掌握质数与合数的概念,能运用“查表法”“试除法”正确地判断一个数是否是质数,理解“关于大于1的任何整数,至少有一个约数是质数”的定理和算术基本定理。 5.理解用分解质因数法及用辗转相除法求最  相似文献   

8.
一、剩余问题在整数除法里,一个数同时除以几个数,整数商后,均有剩余;已知各除数及其对应的余数,从而要求出适合条件的这个被除数的问题,叫做剩余问题。二、两个定理定理1:几个数相加,如果只有一个加数,不能被数a整除,而其他加数均能被数a整除,那么它们的和,就不能被数a整除。如:10能被5整除,15能被5整除,但7不能被5整除,所以(10 15 7)不能被5整除。定理2:二数不能整除,若被除数扩大(或缩小)了几倍,而除数不变,则其余数也同时扩大(或缩小)相同的倍数(余  相似文献   

9.
贵刊1993年第5期刊载过《能被末位是9的自然数整除的整数的特征》一文,本文特给出能被末位是3的自然数整除的整数的特征,以供读者在教学和研究中参考.定理能被自然数10n 3(n 为非负整数)整除的整数的特征是:这个数的末位数的(3n 1)倍与它的末位以前的数字所表示的数  相似文献   

10.
本刊84年第8期第43页给出了一元二次方程ax~2+bx+c=0(其中a≠0,a,b,c均为整数)(*)有两个整数解的充要条件,即是: 定理:方程(*)有两个整数解的充要条件是:b~2-4ac=m~2(m是整数),且b,c均能被a整除.  相似文献   

11.
9整数的可除性特征1.一个整数能被2整除的充分必要条件是这个数的个位数是偶数.2.一个整数能被4整除的充分必要条件是这个数的末两位数能被4整除.3.一个整数能被5整除的充分必要条件是这个数的个位数是0或5.4.一个整数能被3整除的充分必要条件是这个数的各位数字之和能被3整除.  相似文献   

12.
(一)问题的提出在不少数学资料和一些试题中,经常出现这样一类有关整除性的问题:设p(n)=a_0n~k a_1n~(k-1) …… a_k(a_0≠0)…………………(i) 是一个关于整数n的多项式(其中,k为正整数,a_0,a_1,……a_k均为整数)。需要判定p(n)是否能够被整数m(m≠0和1)整除?(所谓整除,是指对一切整数n,p(n)均能被m整除)。例如 (1)试证:n~3-3n~2 2n-6能被6整  相似文献   

13.
对整数a和b(b不为0),如果存在一个整数q,使a=b×q,则称a被b整除,也称b整除a,否则就称a不能被b整除.例如35=5×7,于是35被5(或7)整除.整除有许多性质,下面列出最常用的几个:1.如果b整除a,则b整除a的倍数.2.如果b整除a与c,则b整除(a±c).3.如果b整除a,a又整除c,则b整除c.4.如果a整除c,b也整除c,并且a与c互质,则ab整除c.在整除问题中,能被2,3,4,5,8,9,11,25等整除的数有如下的特征:1.如果一个整数的末位数字是偶数,则这个数必定被2整除.2.如果一个整数的末位数字是0或5,则这个数必定被5整除.3.如果一个整数的末两位数字组成的数被4(或25)整除,…  相似文献   

14.
如果整数a除以整数b (b≠ 0 ) ,除得的商正好是整数 ,而没有余数 ,那么我们称a能被b整除 (或b能整除a )。数学竞赛中常遇到一类方程(组 )———未知数个数比方程的个数多 [不定方程 (组 ) ]。解答此类方程(组 ) ,如无适当方法可行 ,则束手无策。现就如何用整除问题解不定方程(组 ) ,举例如下。一、百钱百鸡问题  相似文献   

15.
整除问题是整数内容最基本的问题.理解掌握整除的概念、性质及数的整除特征,可以简单快捷地解决许多整除问题.本节主要探究一下整除的特征.一、常见数的整除特征大家都熟悉能被2,3,4,5,7,8,9,10,11,13,25,125等整除的数的特征.1.能被2,5,10整除的数的特征是末尾数字能被2,5,10整除.2.能被4,25整除的数的特征是末尾两位数能被4,25整除.3.能被8,125整除的数的特征是末尾的三位数能被8,125整除.  相似文献   

16.
数的整除     
小学数学研究的主要对象是整数,而数的整除性则是研究整数性质的基础,所以每个小学数学教师对这部分知识都应当牢固掌握,并有更深一步的了解.数的整除理论的初步知识一、数的整除性1.整除、约数和倍数的意义.在整数范围内,如果一个整数a除以一个自然数b,能得到一个整数商q,使得a=bq(即余数是零),那么,就说b整除a或a被b整除,记作b|a(或a(?)b).此时把b叫做a的因数或约数,把a叫做b的倍数.  相似文献   

17.
数的整除是指:整数a除以自然数(小学里对于a和b都限于自然数),除得的商正好是整数而没有余数(也就是余数为0),我们就说a能被b整除,或者说b能整除a。这时,a叫做b的倍数,b叫做a的约数,显然零是任何自然数的倍数,1是任何自然数的约数。但零不是任何自然数的约数。  相似文献   

18.
讨论n个连续的整数被n个有关数的整除问题.  相似文献   

19.
对被3(或9)整除的整数特征(即文中预备定理)进行改进,对于解决此类问题更便捷.  相似文献   

20.
<正> 在国内外数学竞赛中经常出现数论题和用数论中的定理或命题改编的题目,尤其是与同余理论有关的问题。我在《初等数论》教学中体会到同余理论在初等数学中有以下四点主要应用,且应将它们贯穿到教学中去,以便学生更进一步熟悉初等数学。1 用于处理有关整除的问题 整数与求余是密切相关的,有些整除问题在解答过程中常是同余理论的灵活运用。 例1(第六届奥赛试题):(1)证明:没有正整数n能让2~n+1被7整除;(2)求出所有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号