首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
第36届IMO第2题,可推广得如下四个命题: 命题1 设a、b、c∈R~ ,且abc=1,则1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥1/2(bc ca ab)(1),当且仅当a=b=c=1时等式成立。 证 易知(2)等价于b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥1/2(bc ca ab)(2)。由平均值不等式可得: b~2c~2 (1/4)a~2(b c)~2≥abc(b C), ∴b~2c~2≥abc(b c)-(1/4)a~2(b c)~2,  相似文献   

2.
由于证明不等式的方法多种多样,因此它既是不等式这一章节的重点,也是高考命题的热点.为了提高同学们的发散思维能力及创新能力,本文特精选了一道例题,利用一题多解的形式来帮助同学们拓展解题思路.例题已知a、b∈R+,且a+b=1,求证:(a+1a)(b+b1)≥245.证明一(综合法)因为a、b∈R+,且a+b=1,所以(a+1a)(b+b1)=(a+41a+43a)(b+41b+43b)≥(1+43a)(1+43b)=1+1261ab≥1+4(a2+1b)2=245.证明二(分析法)要证(a+1a)(b+b1)≥245,即证4(a2+1)(b2+1)≥25ab,也即证4a2b2+4a2+4b2+4≥25ab,整理得4a2b2+4(a+b)2-8ab+4≥25ab,即4a2b2-33ab+8≥0,即证(4ab-1)(ab…  相似文献   

3.
在《由基本不等式“a~2+b~2≥2ab”想到的》(见本刊1989年第4期)一文中给出了以下猜想(即原文的命题19): 命题1 设a,b,c为正数,则 (1) a~5+b~+c~5≥a~8bc+ab~8c+abc~8; (2) a~n+b~n+c~n≥a~pb~qc~r+a~qb~rc~p+a~rb~pc~q。其中n∈N,p,q,r为非负整数,且p+q+r=n。我们首先证明这一猜想是成立的。证明 (1)用两种方法证。证法1 由(a~3-b~3)(a~2-b~2)≥0得 a~5+b~5≥a~3b~2+a~2b~3同理 b~5+c~5≥b~3c~2+b~2c~3, c~5+a~5≥c~3a~2+c~2a~3。以上三个不等式相加,并注意到b~2+c~2≥2bc,c~2+a~2≥2ca,a~2+b~2≥2ab,有 2(a~5+b~5+c~5)≥a~3(b~2+c~2)+b~3(c~2+a~2)+c~3(a~2+b~2)≥2a~3bc+2b~3ca+2c~3ab,  相似文献   

4.
第三十六届国际奥林匹克数学竞赛第二题: 设a、b、c为正实数,且满足a·b·c=1,试证:1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥3/2(1)。(俄罗斯提供) 证法一 由已知条件a·b·c=1,(1)与下面(2),等价:b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥3/2(2),现用含参数基本不等式:a~2 (λb)~2≥2abλ(λ为参数)的变形:a~2/b≥2λa-λ~2b。因而  相似文献   

5.
中师数学课本《代数初等函数》第一册 P_(276)15题:已知 a>0,b>0,a b=20,问 a、b 为何值时,a~2 b~2最小?此题可用均值不等式求解如下:∵a~2 b~2≥2ab.∴2(a~2 b~2)≥a~2 b~2 2ab=(a b)~2.∴a~2 b~2≥((a b)~2)/2=200.当且仅当 a=b 时取“=”.∴a=b=10时,a~2 b~2取最小值200.然而,笔者发现,用柯西不等式解这个题将更简捷,  相似文献   

6.
高中代数下册第10页在推证基本不等式a~3 b~3 c~3≥3abc时附带证明了一个不等式:已知a、b、c∈R,则 a~2 b~2 c~2≥ab bc ca (1)(当且仅当a=b=c时取等号)  相似文献   

7.
统编教材介绍了重要不等式的两个定理及其推论。如何引导学生发现其内在规律呢? 先研究字母“次数”的变化(a、b、c…皆为正数) ①a~2+b~2≥2ab■a+b≥2(ab)~(1/2)即为推论,显然成立。a~2+b~2≥2ab■a~4+b~4≥2a~2b~2易证其成立。同样可推出  相似文献   

8.
本文介绍的勾股不等式的证明很简单,它在应用中却很方便。命题若a≥0,b≥0,c≥0,且a~2+b~2=c~2,则 a+b≤2~(1/2)c (1) 当且仅当a=b时取等号。证明据题设,利用a~2+b~2≥2ab,得 (a+b)~2=a~2+b~2+2ab≤2(a~2+b~2)=2c~2 ∴ a+b≤2~(1/2)c 显然,当且仅当a=b时等号成立。(证毕) 当a,b,c均为正实数时,由a~2+b~2=c~2知a,b,c组成一个直角三角形的三边,故称(1)为勾股不等式。  相似文献   

9.
设△ABC的边和面积分别为a,b,c和△,则a~2 b~2 c~2≥3~(1/4)△. 证1 比较法.a~2 b~2 c~2-3~(1/4)△=2(b~2 c~2)-4bcosin(A 30°)≥2(b-C)~2≥0. 证2 (a~ b~2 c~2)-(3~(1/4)△)~2=(a~2 b~2 c~2)-3(a b c)(a b-C)·(b c-a)·(C d-b)=2[(a~2-b~2)~2 (b~2-c~2)`2 (c~2-a~2)~2]≥0.  相似文献   

10.
《数学通报》2005年8月号数学问题的1570给出如下不等式链:设 a,b,c∈R~ ,求证:a~5/b~3 b~5/c~3 c~5/a~3≥a~/b~2 b~4/c~2 c~4/a~2≥a~3/b b~3/c c~3/a≥a~2 b~2 c~2.(1)(注:这里我们略去了原问题中的最后一个常见的不等式.)本文通过对这个问题不同证法的探究,得到一个和式不等式,并利用这个和式不等式对问题1570进行再证和拓广.  相似文献   

11.
一个不等式的补充及推广   总被引:1,自引:0,他引:1  
本刊文[1]中有题目:设a、b、c∈R~ ,求证:(a~2 ab b~2)(1/2) (b~2 bc c~2)(1/2) (c~2 ca a~2)(1/2)≥3~(1/2)(a b c) (*) 其它杂志又相继刊登了此题的多种证明方法.这个不等式实质上仅对(*)式右端作出了下界的估计,本文进一步对(*)式左端作出其上界的估计.  相似文献   

12.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

13.
设a>0,b>0,那么2/(1/a+1/b),(ab)(1/2),(a+b)/2,((a~2+b~2)/2)/(1/2)分别叫做a,b的调和平均数、几何平均数、算术平均数及平方平均数,我们可以得到下列不等式(2/(1/(a~2)+1/(b~2)))(1/2)≤2/(1/a+1/b)≤(ab)(1/2)≤(a+b)/2≤((a~2+b~2)/2)(1/2)≤(a~2+b~2)/(a+b).  相似文献   

14.
数学竞赛题是课本基础知识和技能技巧的结晶。大家熟知基本不等式是:(1)a~2+b~2≥2ab(a、b∈R);(2)a+b≥2(ab)~(1/2)(a、b∈R~+)。由它们可以推出如下变形式:  相似文献   

15.
不等式a b/2≥ab~(1/2)(a,b∈R )是中学数学重要不等式之一.其应用广泛,技巧性强,加强这一不等式的教学,对提高学生的分析问题、综合应用知识的证题能力和创造思维能力,以及诱发学生对数学的美感,增长他们创造数学美的能力是大有好处的.本文从不同的角度给出这一不等式的几种证法,以供参考. 定理如果a,b∈R ,那么a b/2≥ab~(1/2)(当且仅当a=b时,取“=”号). 证法一:(用二次根式的性质证) 当a≠b时,(a~(1/2)-b~(1/2))~2>0; 当a=b时,(a~(1/2)-b~(1/2))~2=0. 故(a~(1/2)-b~(1/2))~2≥0. 即a b-2ab(1/2)≥0. 故a b/2≥ab~(1/2). 证法二:(用面积证)如图1所示, 当 a≠b 时,S_(正方形ABCD)>4S_(矩形AB_1C_1D_1); 当a=b时,S_(正方形ABCD)=4S_(矩形AB_1C_1D_1), 故 S_(正方形ABCD)≥4S_(矩形AB_1C_1D_1) (a b)~2≥4aba b/2≥ab~(1/2).  相似文献   

16.
<正>本文先给出基本不等式的一个等价变形,再举例说明它的广泛应用.结论已知a、b、λ∈R,且b(a+b)> 0,则有ab≥-λ2+(λ+1)2+(λ+1)2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2+λ2+λ2b2b2≥2λab,得a2≥2λab,得a2≥2λab-λ2≥2λab-λ2b2b2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2b].再两边同时  相似文献   

17.
宋庆老师在文[1]末提出4个猜想.其中猜想4为:已知a,b,c是正数,求证a~2/(a~2+(b+c)~2)+b~2/b~2+(c+a)~2+c~2/c~2+(a+b)~2≥3/5(1);(a~3)/(a~3+(b+c)~3)+(b~3)/(b~3+(c+a)~3)+(c~3)/(c~3+(a+b)~3)≥1/3(2);(a~4)/(a~4+(b+c)~4)+(b~4)/(b~4+(c+a)~4)+(c~4)/(c~4+(a+b)~4)≥3/(17)(3).  相似文献   

18.
数学问答     
52.问:设有正数a、b,满足ab=a b 3, 求ab的取值范围. (湖北秭归县一中三(6)班王立强) 答:ab=a b 3≥2 3.所以ab-2-3≥0.视其为关于(ab)~(1/2)的二次不等式,解得(ab)~(1/2)≥3,或者(ab)~(1/2)≤-1(舍去). ∴ab≥9.ab的取值范围为[9, ∞).当且仅当a=b且(ab)~(1/2)=3时,即a=b=3时取等号. (河南师大附中赵振华)  相似文献   

19.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

20.
我们知道,对于任意两个正实数a、b恒有不等式:a~(a-b)≥b~(a-b)(※)成立。本文利用这一不等式给出几个难度较大的不等式的简洁证明。例1 已知a、b、c∈R~+,求证: a~(2a)b~(2b)c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b)(1978年上海市中学数学竞赛试题) 证明由(※)得 a~(a-b)≥b~(a-b),b~(b-a)≥c~(b-c),c~(c-a)≥a~(c-a)。以上不等式两边分别相乘得 a~(a-b)·b~(b-c)·c~(c-a)≥b~(a-b)·c~(b-c)·a~(c-a)。整理得:a~(2a)·b~(2b)·c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b) 例2 设a、b、c∈R~+.求证: a~ab~bc~c≥(abc)(a+b+c)/3(1974年美国第三届奥林匹克竞赛试题)。证明由例1知  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号