首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题目:当k为何值时,方程(k2-1)x2+2(k+1)x+1=0有实数根?四位同学采取了如下四种不同的解法。甲的解法:∵△=[2(k+1)]2-4(k2-1)=8k+8.∴当8k+8>0,即k>-1时,方程有实数根。乙的解法:∵△=8k+8,∴当8k+8≥0,即k≥-1时,方程有实数根。丙的解法:∵△=8k+8,依题意有:k2-1≠08k+8≥0解之得:k≠±1,k≥-1∴当k>-1且k≠1时,方程有实数根。丁的解法:分别讨论k2-1≠0与k2-1=0两种情:(1)设k2-1≠0,依题意有k2-1≠08k+8≥0解得:k≠±1,k≥-1∴当k>-1且k≠1时,方程有两个实数根;(2)当k=1时,原方程为4x+1=0,有一个实数根;(3)当k=-1时,原方程为0·x+1=0,方程…  相似文献   

2.
众所周知 ,解分式方程最常用的方法是去分母法 ,这样 ,未知数的允许值范围可能扩大 ,解出的未知数的值必须检验 ,以防增根出现 .因此在探讨分式方程的解时 ,应十分注意增根 .下面举例说明 :一、分式方程“有解”情形例 1  k为何值时 ,分式方程 kx2 + 5x + 4-2x + 4+ 1x + 1=0有负根 .解 :去分母得 :k - 2 ( x + 1) + ( x + 4) =0解得 x =k + 2 .由题意知 :x =k + 2 <0且 x =k + 2≠ - 1且 x =k + 2≠ - 4,故当 k <- 2且 k≠- 3且 k≠ - 6时 ,原方程有负根 .例 2  k为何值时 ,分式方程 k( k + 2 )2 x - k( k - 1)2 ( x - 1)= 1有两实根 .解…  相似文献   

3.
众所周知 ,“根与系数的关系”的应用之一是构造方程 ,但它不是构造方程的惟一方法 ,本文举例介绍构造方程的另两种方法 ,供同学们参考。例 1 求作一方程 ,使它的各根分别是方程x2 - 3x + 2 =0的各根的 3倍。解法一 :设所求方程的未知数为 y。由题意 ,得 y =3x ,即x =y3,代入原方程 ,得 ( y3) 2 - 3·y3+ 2 =0整理 ,得 y2 - 9y + 1 8=0 .解法二 :设所求方程为 y2 + py + q =0 ,由题意 ,得 y =3x ,∴ ( 3x) 2 + 3px + q =0 ,即 9x2 + 3px + q =0 .此方程与原方程是同解方程 ,∴19=- 33p =2q,∴p =- 9,q =1 8.则所求作方程为 y2 - 9y + 1 8=0…  相似文献   

4.
在解与实数相关的问题时,常常用到一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac,这里谈谈判别式的具体应用中的一些错解。一、待定系数的求值问题例1.已知关于x的方程x2-mx-n=0的两根的积比两根之和的2倍小12,并且两根的平方和为22,求m,n的值。错解:设两根分别为x1、x2则x1+x2=m,x1x2=-n依题意,得2(x1+x2)-x1x2=12x21+x22=2 2即2m+n=12m2+2n=2 2解得m1=7n1=-272 或m2=-3n2=132 分析:∵方程有两根,∴△≥0即m2+4n≥0,但m1=7,n1=-272时,△<0。不合题意,应舍去。当m2=-3,n2=132时△>0∴m=-3,n=132例2.已知一元二次方…  相似文献   

5.
一、辨别一元二次方程例 1 方程x4+ax3-x2 +a2 -1 =0是否是一元二次方程 ?如果是 ,指出各项系数 ;如果不是说明理由 .解 当x为常数时 ,此方程是关于a的一元二次方程 ,化为一般形式是a2 +x3a+x4-x2 -1 =0 ,其中二次项系数为 1 ,一次项系数为x3,常数项为x4-x2 -1 .二、判别根的情形例 2 判别关于x的方程k2 x2 -( 2k+1 )x+1 =0的根的情况 .解 当k =0时 ,方程变为 -x +1 =0 ,原方程只有一个实数根 1 ;当k≠ 0时 ,∵Δ =[-( 2k+1 ) ]2 -4k2=4k+1 .∴当k>-14 ,且k≠ 0时 ,原方程有两个不相等的实数根 ;当k=14 时 ,原方程有两个相等的实数根 ;…  相似文献   

6.
一元二次方程是中考的必考热点 .在2 0 0 0年全国各地的中考试卷中 ,有不少试题设计得新颖别致 ,富有创新特点 .现选择一道关于一元二次方程的阅读型试题 ,介绍给同学们 .题目 已知关于x的方程kx2 +( 2k -1 )x +k -2 =0 .( 1 )若方程有实根 ,求k的取值范围 .( 2 )若此方程两实根为x1、x2 且x21+x22 =3 ,求k的值 .解  ( 1 )依题意 ,得Δ≥ 0 ,∴  ( 2k-1 ) 2 -4k(k -2 )≥ 0 .解得k≥ -14 .∴ k的取值范围是k≥ -14 .( 2 )依题意 ,得x21+x22 =(x1+x2 ) 2 -2x1x2 =3 ,即 -2k -1k2 -2·k -2k =3 .化简 ,得k2 …  相似文献   

7.
1.光的反射例 1 自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在的直线方程. (89高考) 解圆方程的标准形式是(x-2)2+(y-2)2=1. 设光线l所在的直线方程是 y-3=k(x+3) (斜率k待定)由题意知k≠0,于是l的反射点的坐标是(-3/k-3,0).  相似文献   

8.
一元二次方程ax2+bx+c=0(a≠0)根的判别式Δ=b2-4ac是初中数学的一个重要知识点,本文结合例题,说说应用一元二次方程根的判别式(以下简称判别式)解题时需注意的几点.一、使用判别式的条件方程ax2+bx+c=0(a≠0)的a≠0是使用判别式的前提条件.例1 关于x的一元二次方程k2x2-(2k+1)x+1=0有两个实数根,求k的取值范围.分析:根据题设条件,可知Δ=[-(2k+1)]2-4k2≥0且k2≠0,解得k≥-14且k≠0. 二、方程有两个实数根与方程有实数根区别方程ax2+bx+c=0有两个实数根,则必有≠0;但方程ax2+bx+c=0有实数根,则它可有两个实数根,也可能有一个实数根,…  相似文献   

9.
x的一次方程与x的一元二次方程都是关于x的方程,区别只是x的一元二次方程多了一个隐含条件,如二次项系数不为零,然而这个不明显的条件,导致很多同学把关于x的方程的实根误认为是关于x的一元二次方程的实数根。为避免这种错误,特举几例加以说明。例1k为何值时,关于x的方程2(k+1)x2+4kx+2k-1=0有实数根?解:若方程2(k+1)x2+4kx+2k-1=0是一元二次方根,则k应满足:2(k+1)≠0△=(4k)2-4×2(k+1)·(2k-1)≥0kk≠≤1-1k≤1且k≠-1若方程2(k+1)x2+4kx+2k-1=0是一元一次方程,则有2(k+1)=0即k=-1·当k=-1时,原方程为-4x-3=0,方程有实数根x=-43,综合两种…  相似文献   

10.
在解二元一次方程组时 ,若能仔细观察方程组特征 ,并根据解题目标去设计合理的解题方案 ,就会获得巧妙的解题方法 .例 1 若 2 x3 m + 5n+ 9+3 y4m -2 n-7=2 0 0 3是关于 x、y的二元一次方程 ,试求 mn的值 .(广西 2 0 0 3年数学竞赛题 )解 :由题意 ,得 3 m+5 n+9=1,4m-2 n-7=1. 即3 m +5 n=-8,4m -2 n=8. 注意到常数项互为相反数 ,故把两式相加得 :7m +3 n =0 ,∴ 7m =-3 n,∴ mn=-37.例 2 若关于 x、y的方程组 2 x+3 y=2 k+1,  13 x-2 y=4k+3  2 的解 x、y的值之和为 2 40 .试求 k的值 .(2 0 0 1年广西数学竞赛题 )解 :由题意知 :x+y=2…  相似文献   

11.
大家都知道,判别式主要应用于判断一元二次方程根的情况,这类问题比较简单,下面介绍判别式其他方面的一些应用·一、求条件最值问题例1已知实数x,y满足x2-12y=0,求x-3y的最值·分析:运用设“k”法消去y,即可整理成x的一元二次方程·解:设x-3y=k,则y=x3-k,代入x2-12y=0,化简得x2-4x+4k=0,所以Δ=(-4)2-4×1×4k≥0,所以k≤1,所以x-3y有最大值为1,无最小值·例2已知实数x,y满足条件x2+xy+y2=1,求x2+y2的最值·解:设x2+y2=k,则x2+ky2=1,代入x2+xy+y2=1=x2+ky2,化简得(1-1k)x2+xy+(1-1k)y2=0·整理为yx的一元二次方程为(1-1k)(xy)2+(xy)+(1-1k)=…  相似文献   

12.
在解析几何中“求以圆锥曲线中的定点为中点的弦的方程”是直线与圆锥曲线位置关系中重要考点之一,高考中也多次出现.题目:设A、B两点是双曲线C:2x2-y2=2上两点,点N(1,2)是线段AB中点,求直线AB方程.解法1(巧用韦达定理,整体替换):要求过定点N(1,2)的直线AB的方程,关键是求斜率k.设点A(x1,y1),点B(x2,y2),由中点公式知:x1+x2=2,y1+y2=4,再利用韦达定理整体替换构造关于k的方程,求k的值.设直线AB方程为:y=k(x-1)+2,代入双曲线C的方程整理得:(2-k2)x2+2k(k-2)x-k2+4k-6=0.当2-k2≠0时,则Δ=4k2(k-2)2-4(2-k2)(-k2+4k-6)>0,解得k<23且k≠…  相似文献   

13.
《中学生数理化》2009,(6):56-61
&#167;7.1 1.设原计划每小时抢修路段的长度为x m.   依题意可得4800/x=4800/x(1+20%)+2.解之得x=400.所以每小时抢修路段长为400m.   2.(1)设3-y=k/x+1(k≠0),由题意得3-2=k/1+1,所以k=2.故y=3-2/x+1.……  相似文献   

14.
一、由方程的定义确定参数例1若(m2-m-2)x2+mx+3=0是关于x的一元二次方程,则m的取值范围是().(A)m≠-1;(B)m≠2;(C)m≠-1且m≠2;(D)一切实数.解:由一元二次方程的定义,得m2-m-2≠0,∴(m-2)(m+1)≠0,∴m≠2且m≠-1.故选(C).二、由方程根的定义确定参数例2方程x2-12x-m=0的一个根是2,那么m的值是.解:由方程根的定义,把x=2代入方程,得22-12×2-m=0,解得m=-20.三、由方程根的情况确定参数例3已知关于x的一元二次方程(1-2k)x2-2k+1√x-1=0有两个不相等的实数根,求k的取值范围.解:∵方程有两个不相等的实数根,∴△=(-2k+1√)2-4(1-2k)×(-1)=-4k…  相似文献   

15.
一、数学课堂教学中典型问题情境创设成功范例剖析范例 1:阅读理解型问题情境设计。(摘自《中小学数学》1999年第三期《浅谈阅读型中考试题》)。阅读 :已知方程 x2 - 3x+ 1=0 ,求一个一元二次方程 ,使它的根是原方程各根的立方。解 :设方程 x2 - 3x+ 1=0的根为 x1,x2 ,所求方程的根为 x31,x32∵ x1+ x2 =3,  x1· x2 =1第一步∴x31+ x32 =( x1+ x2 ) ( x21- x1x2 + x22 )第二步    =( x1+ x2 ) [( x1+ x2 ) 2 - 3x1x2 ]第三步    =3× ( 32 - 3× 1) =3× 6 =18x31· x32 =( x1x2 ) 3 =13 =1根据以上阅读材料 ,完成以下填空 :1.得到…  相似文献   

16.
一、阅读型试题 例1 阅读下面的解答过程,请判断其是否有错?若有错,请你写出正确的解答。 已知:m是关于x的万程mx~2-2x+m=0的一个根,求m的值。 解:把x=m代入原方程,化简,得m~3=m. 两边同除以m,得m~2=1,则m=1. 把m=1代入原方程检验,知m=1符合题意。 答:m的值是1.  相似文献   

17.
探索型1.解 :( 1)依题意可得 :x1+ x2 =2 ,x1· x2 =k由 y=( x1+ x2 ) ( x12 + x2 2 -x1x2 ) =( x1+ x2 ) [( x1+ x2 ) 2-3 x1x2 ] =2 ( 4 -3 k) =8-6k 即 y=8-6k.( 2 )∵方程有两实数根∴ Δ=b2 -4ac=4-4k≥ 0 .∴ k≤ 1.由此得 -6k≥ -6. ∴y=8-6k≥ 8-6=2 .即当 k=1时 ,y有最小值 2 ,没有最大值 .2 .( 1)解 :∵∠ BAC=∠ BCO,∠ BOC=∠ COA=90°,∴△ BCO∽△ CAO,∴ AOCO=COOB.∴ CO2 =AO· OB.由已知可得 :AO=| x1| =-x1,OB=| x2 | =x2 .∵ x1x2 =-m<0 ,∴ m>0 .∴ CO=m,AO· OB=m.∴ m2 =m,∴ m=1,m=0 (舍去 ) .∴…  相似文献   

18.
一、顾此失彼例1(1998·重庆市万州区中考题)在RtABC中,∠C=90°,sinA、sinB是方程(m+5)x2-(2m-5)x+12=0的两个根,求m的值.错解由根与系数关系可得:sinA+cosA=2m-5m+5,sinA·cosA=12m+5.由sin2A+cos2A=1,有2m-5m+52-24m+5=1.解之得m=20或-2.经检验,m=20或-2是原方程的解,∴m=20或-2.分析本题在解分式方程时,考虑到了验根,但却忽略了三角函数的值域.事实上,因∠A是锐角,可知0相似文献   

19.
例1若双曲线9xk22-4yk22=1与圆x2 y2=1没有公共点,求实数k的取值范围.此题的常见解法如下:画出题意图如右下,可知双曲线9xk22-4yk22=1与圆x2 y2=1没有公共点的等价条件为:9k2>1,即|3k|>1,∴k>31或k<-31.此解法直观明快,显示了数形结合的威力.然而,大多数学生却习惯于如下解法:将圆的方程变形,得y2=1-x2,代入双曲线方程,得x29k2-14-k2x2=1.整理,得13x2-(9 36k2)=0由Δ1=36k2 9<0,得k2<-14故k∈Φ.即,不存在实数k使双曲线与圆没有公共点,也就是任意实数都不能使双曲线与圆有公共点.显然,上述解法有误.如何处理上述数与形的冲突,不少老师的做法…  相似文献   

20.
一元二次方程是初中代数的重要内容,然而很多同学由于受思维定势的影响,往往会忽视含有字母系数的一元二次方程中的隐含条件,致使解答陷入误区.具体表现主要有以下几方面:一、忽视二次项系数a≠0导致字母系数取值范围扩大例1已知关于x的一元二次方程(a2-1)x2+2(a+2)x+1=0有实根,求a的取值范围.错解:因为方程有实根,所以Δ≥0,即4(a+2)2-4(a2-1)≥0,解得a≥-45.剖析:由一元二次方程的定义知:a2-1≠0·而上述解题过程恰恰忽略了这一点,正确解法应为:依题意得:a2-1≠0Δ=4(a+2)2-4(a2-1)≥0解得a≥-54且a≠±1.(注:例1等价于:已知关于x的方程(a…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号