首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文给出圆锥曲线弦的中点坐标与该弦的垂直平分线的截距之间的关系 ,并举例说明它的应用 .定理 设圆锥曲线中与坐标轴不平行的弦P1P2 的中点为M (x0 ,y0 ) ,该弦的垂直平分线l与x轴的横截距为a ,与 y轴的纵截距为b .(1)对于椭圆或双曲线  x2A + y2B =1  (A >0 ,B >0或AB <0 ) ,有 a=A-BA x0 , b=B-AB y0 ;(2 ) 对于抛物线 y2 =2 px  (p ≠ 0 ) ,有  a=x0 + p , b=y0p(x0 + p) ;(3)对于抛物线x2 =2 py  (p≠ 0 ) ,有  a=x0p(y0 + p) , b =y0 + p .证明  (1) 设P1(x1…  相似文献   

2.
直线方程x0x/a^2+y0y/b^2=1的几何意义   总被引:6,自引:0,他引:6  
文 [1]给出了直线方程x0 x y0 y =r2 的三种几何意义 .笔者认为直线方程 x0 xa2 y0 yb2 =1也有类似的几何意义 .先求经过椭圆 x2a2 y2b2 =1(a >0 ,b >0 )上一点P(x0 ,y0 )的切线方程 .设切线的斜率为k ,则其方程为y - y0 =k(x -x0 )或y=k(x -x0 ) y0 .将y的表达式代入椭圆方程 ,得x2a2 [k(x -x0 ) y0 ] 2b2 =1.化简并整理为x的二次方程就是(b2 a2 k2 )x2 - 2a2 k(kx0 - y0 )x a2 (kx0 -y0 ) 2 -a2 b2 =0 .  由于点P(x0 ,y0 )是切点 ,所以x0 是这个方程的二重实…  相似文献   

3.
我们知道圆x2 + y2 =R2 在其上任一点 (x0 ,y0 )处的切线方程为x0 x+ y0 y=R2 如果对于直线Ax+By +C =0 (C ≠ 0 )作如下变形 :R2 A-CR2 x +R2 B-CR2 y =1.若点P(- R2 AC ,- R2 BC )满足圆的方程 ,则直线与圆相切于点P .椭圆 x2a2 + y2b2 =1在其上任一点 (x0 ,y0 )处的切线方程为 x0 xa2 + y0 yb2 =1,对于直线Ax+By +C =0 (C≠ 0 )作如下变形 :    a2 A-Ca2 x+b2 B Cb2 y=1.若点P(- a2 AC , b2 BC )满足椭圆方程 ,则直线与椭圆相切于点点P .双曲线x2a2 - y2…  相似文献   

4.
解析几何中的圆锥曲线是高考的重点、难点和热点 ,而其中的计算是困难的 .如何避免求交点 ,从而简化计算 ,也就成了处理这类问题的难点与关键 .下面介绍一种策略———设而不求 ,这实质是整体结构意义上的变式和整体思想的应用 .一、与中点弦及弦的中点有关的问题例 1 过点A(2 ,1 )的直线与双曲线x2 -y22 =1交于M、N两点 ,求弦MN的中点P的轨迹方程 .解 :设M(x1 ,y1 ) ,N(x2 ,y2 ) ,则x21 -y21 2 =1 ,x22 -y222 =1 ,两式作差并整理 ,得y1 -y2x1 -x2 =2 x1 x2y1 y2 .设弦MN的中点P(x0 ,y0 ) ,又kMN =k…  相似文献   

5.
文 [1]证明了有心圆锥曲线任一弦的斜率和弦中点与椭圆中心连线的斜率 (均存在且不为零 )之积为一定值 ,受此启发 ,本文给出抛物线的有关斜率的一对定值 ,并举例说明其在解题中的应用 ,聊作文[1]的补缀 .定理 1 设M (x0 ,y0 )是抛物线 y2 =2 px (p>0 )上的定点 ,A、B是抛物线上的两动点 ,若kMA·kMB =t (t≠ 0 ) ,则直线AB过定点x0 - 2pt ,- y0 .证明 设A(x1 ,y1 )、B(x2 ,y2 ) ,则有y21 =2 px1 ( 1) ,y22 =2 px2 ( 2 ) ,y20 =2 px0 ( 3) .( 1) - ( 2 )得  ( y1 y2 ) ( y1 - y2 ) =2 p(x1…  相似文献   

6.
1 .反弹琵琶 ,独辟蹊径例 1 在椭圆 x2a2 + y2b2 =1(a >b >0 )上取一点P ,P与长轴两端点A、B的连线分别交短轴所在直线于M、N两点 ,设O为原点 ,求证 :|OM |·|ON|为定值 .证明 :设M ( 0 ,m)、N( 0 ,n) ,则lPA:y=m - 00 +a(x +a) ,①lPB:y =n - 00 -a(x -a) .           ②①×② ,得  y2 =- mna2 (x2 -a2 ) .又 y2 =b2 1- x2a2 ,故b2 a2 -x2a2 =- mna2 (x2 -a2 ) .mn =b2 ,为定值 .即 |OM |·|ON| =b2 ,为定值 .评注 :本题没有设出P点坐标进而求出M、N两…  相似文献   

7.
命题 若椭圆或双曲线的中心在原点 ,焦点在x轴上 ,离心率为e且经过点P(x1,y1) ,则其方程为   y2 - y21=(e2 - 1) (x2 -x21) .证明 以椭圆为例 ,设椭圆中心在原点 ,焦点在x轴上 ,则其标准方程为 x2a2 y2b2 =1(a >b>0 ) .若椭圆的离心率为e ,经过点P(x1,y1) ,则有   e2 =c2a2 =a2 -b2a2 ,x21a2 y21b2 =1,解得  a2 =x21 y211-e2 ,b2 =(1-e2 )x21 y21.所以椭圆方程为x2x21 y211-e2 y2(1-e2 )x21 y21=1,即 y2 - y21=(e2 - 1) (x2 -x21) .对于双曲线亦可用同样的方法证明命题成立…  相似文献   

8.
二维柯西不等式 :设a、b、c、d∈R ,则有(a2 b2 ) (c2 d2 )≥ (ac bd) 2 .当且仅当 ac =bd 时 ,不等式取等号 .1 推证几个重要结论命题 1 椭圆 x2a2 y2b2 =1与直线Ax By C =0有公共点的充要条件是A2 a2 B2 b2 ≥C2 .证明 由柯西不等式得(Ax By) 2 =Aa· xa Bb· yb2≤A2 a2 B2 b2 x2a2 y2b2 .若 (x0 ,y0 )是已知椭圆和直线的公共点 ,则满足x20a2 y20b2 =1、Ax0 By0 C =0 ,则上述不等式左边为C2 ,右边为A2 a2 B2 b2 ,充分性得证 .若 (x ,y)是直线上…  相似文献   

9.
本文从一个定理的证明出发 ,利用数学知识探讨椭圆的光学性质 .定理 :圆锥曲线E :mx2 +ny2 =1(m >0 ,n >0或mn <0 ) ,不平行于对称轴的任一弦AB与过AB中点M的直线OM的斜率之积为常数 - mn .证明 :设A(x1 ,y1 )、B(x2 ,y2 )、M (x0 ,y0 ) .由 mx21 +ny21 =1,mx22 +ny22 =1,两式相减 ,得m(x1 +x2 ) (x1 -x2 ) +n(y1 +y2 ) (y1 -y2 ) =0 .因x1 +x2 =2x0 ,y1 + y2 =2 y0 ,故mx0 (x1 -x2 ) +ny0 ( y1 - y2 ) =0 .又∵ x1 -x2 ≠ 0 ,x0 ≠ 0 ,∴  y1 - y2x1 -x2·y0x0=- …  相似文献   

10.
命题 1 已知椭圆 x2a2 y2b2 =1(c2 =a2 -b2 ) ,则椭圆上存在点P ,它与两焦点F1、F2 连线互相垂直的条件是b≤c <a .证 :设P(x0 ,y0 ) F1(-c ,0 ) ,F2 (c ,0 )∵PF1⊥PF2∴ (y0 -0 ) (y0 -0 ) (x0 c) (x0 -c) =0即 :x20 y20 =c2亦即 :|PO|=c(O为坐标原点 )又∵椭圆短半轴是b ,长半轴是a ,P又在椭圆上∴b≤c <a命题 2 已知P是椭圆x2a2 y2b2 =1(c2 =a2 -b2 )上的点 ,且b≤c <a ,F1、F2 为其焦点 ,若∠F1PF2 =90° ,则△PF1F2 的面积为定值b2 .证 :由已知得 : |…  相似文献   

11.
焦点弦长公式的几种形式及其应用   总被引:1,自引:1,他引:0  
圆锥曲线的焦点弦是解析几何教学的一个重点和难点,也是各类考试的热点问题,解题中有着广泛的应用.但解答这类问题,一般演算繁长且易出差错.为此,本文利用直线的参数方程推导出不同形式的焦点弦长公式,可以在不同的题设条件下使用,简便快捷,学生兴趣盎然,课堂效果好,现说明如下.命题1 AB是过抛物线y2=2px(p>0)或椭圆b2x2 a2y2=a2b2(a>b>0)或双曲线b2x2-a2y2=a2b2(a>0,b>0)的焦点F的弦,椭圆和双曲线的半焦距为c.若AB的倾斜角为α,则(1) |AB|抛物线=2psin2α;(2) |AB|椭圆=2ab2b2 c2sin2α;(3) …  相似文献   

12.
二次曲线中有许多美妙的性质 ,恰当地运用这些性质能优化我们的解题。本文介绍一个简洁优美的焦点三角形公式 ,并举例说明它的应用。定理 P是椭圆x2a2 +y2b2 =1 (a >b >0 )或双曲线x2a2 -y2b2 =1 (a >0 ,b>0 )上一点 ,F1(-c,0 ) ,F2 (c,0 )是左右两焦点 ,设 |PF1|·|PF2 |=λ2 ,则焦点△F1PF2的面积S =bλ2 -b2 。证明  (以椭圆为例 )设 |PF1|=r1,|PF2 |=r2 ,∠F1PF2 =α ,则r1+r2 =2a ,α∈ (0 ,π) ,在△F1PF2中 ,由余弦定理可得 :cosα =r21+r22 -4c22r1r2=(r1+r2 ) 2 -4c2 -2r…  相似文献   

13.
1 圆锥曲线焦点弦的长度取值范围定理 1 椭圆 x2a2 y2b2 =1  (a >b >0 )的离心率e=ca ,p为焦点到相应准线的距离 ,p =b2c .设椭圆焦点弦AB的长度为d ,则d∈ 2ep ,2ep1-e2 ,即d∈2b2a ,2a .证明 以椭圆的左焦点为极点 ,建立极坐标系 ,椭圆的极坐标方程为 ρ =ep1-ecosθ.不妨设AB为过左焦点的弦 ,A( ρ1,θ) ,B( ρ2 ,π θ) ,θ∈〔0 ,π) ,则 |AB|=ρ1 ρ2 =ep1-ecosθ ep1-ecos(π θ)=2ep1-e2 cos2 θ.当cosθ=0 ,即θ =π2 时 ,|AB|min=2ep =2b2a ;当co…  相似文献   

14.
性质 1 圆 (x -h) 2 (y-k) 2 =r2 中 ,以P0 (x0 ,y0 ) (x0 ≠h或y0 ≠k)为中点弦的所在的直线方程为(x0 -h) (x-x0 ) (y0 -k) (y- y0 ) =0 .当h =k=0时方程变为x0 (x -x0 ) y0 (y - y0 ) =0 .证明 设弦所在直线与圆交于A(x1,y1) ,B(x2 ,y2 ) ,所以有(x1-h) 2 (y1-k) 2 =r2 ,(1)(x2 -h) 2 (y2 -k) 2 =r2 . (2 )(2 ) - (1)得   (x2 -x1) (x1 x2 - 2h)   =- (y2 - y1) (y1 y2 - 2k) .当x2 ≠x1时 ,可变为x1 x2 - 2hy1 y2 - 2k =- y2 - y1x2 -x1.又P0 (x0 ,y0…  相似文献   

15.
一、选择题 :(本大题共 1 2小题 ,每小题 5分 ,共 60分 )1 .过点 ( 3 ,-4)且在两坐标轴上截距相等的直线方程是 (   )   (A)x+y +1 =0   (B) 4x -3 y=0   (C) 4x+3 y =0   (D) 4x+3 y=0或x +y+1 =02 .已知直线 2x +y-2 =0和mx -y+1 =0的夹角为 π4,那么m的值为 (   )   (A) -13 或 -3  (B) 13 或 3   (C) -13 或 3 (D) 13 或 -33 .点P1 (a ,b)关于直线x+y=0的对称点是P2 ,P2 关于原点的对称点是P3,则|P1 P3|=(   )   (A) 2 (a-b) 2   (B) 2 |a +b|   (C) 2 |a -b…  相似文献   

16.
20 0 1年广东省高考数学第 2 1题 :已知椭圆 :x22 y2 =1的右准线l与x轴相交于点E ,过椭圆右焦点F的直线与椭圆相交于A、B两点 ,点C在右准线上且BC ∥x轴 ,求证 :直线AC经过线段EF的中点 .此题对一般性结论仍成立 ,还可以拓广到其它圆锥曲线 .拓广 1 已知椭圆 x2a2 y2b2 =1的右准线l与x轴相交于点E ,过椭圆右焦点F的直线与椭圆相交于A、B两点 ,点C在右准线上且BC∥x轴 ,求证 :直线AC经过线段EF的中点 (a >b>0 ) .     图 1证明 如图 1,记直线AC与x轴的交点为N ,过A作AD⊥l,D是垂足 .…  相似文献   

17.
性质 1 双曲线的一条准线和任意一条渐近线的交点 ,与这条准线相对应的焦点的连线 ,必垂直于该渐近线 .     图 1证明 设双曲线为x2a2 - y2b2 =1  (a>0 ,b>0 ) ,如图 1所示 ,准线与渐近线有四个交点A、B、C、D .任取一交点A ,则A a2c,abc .∵kAF2 ·kOA =abc - 0a2c -c· ba =- 1,∴AF2 ⊥OA .其它B、C、D三点类似可以证明 .性质 2 双曲线的一条准线与渐近线的两个交点 ,该准线相对应的焦点 ,以及对称中心这四点共圆 .证明 设双曲线为x2a2 - y2b2 =1  (a>0 ,b>0 ) ,如图 1所示 ,任…  相似文献   

18.
众所周知 ,方程 (x -a) 2 (y-b) 2 =r2 (r >0 )表示的曲线是以 (a ,b)为心 ,以r为半径的圆 ,此方程可变形为F(x ,y) =0 ,即 (x-a) 2 (y-b) 2-r2 =0 .1 非同心圆的等切线及其性质定理 1 到两个非同心圆的切线长相等的点在同一条直线上 .     图 1证明 如图 1,设圆C1和C2 的方程分别为F1(x ,y) =0和F2 (x ,y)=0 ,点M (x ,y)为到两圆切线长相等的任意点 ,∵ |AM|2 =|BM|2 ,∴|MC1|2 -r21=|MC2 |2 -r22 ,即 (x -a1) 2 (y-b1) 2 -r21=(x-a2 ) 2 (y-b2 ) 2 -r22 ,整理得2 (…  相似文献   

19.
性质 设P1、P2是双曲线x2a2-y2b2=1上两点,P(xp,yp)是弦P1P2的中点,直线P1P2的斜率为k,则有 ypxp·k=b2a2.证明较简单,此处从略.应用此性质来解决有关双曲线中点弦的问题,有简捷明快、出奇制胜之感.本文拟谈谈该性质的应用.1 求中点弦例1 直线x+y-2=0被双曲线x23-y2=1所截得的弦的中点是.解 设弦的中点为(x0,y0),则由性质可得y0x0·(-1)=13, ∴ x0+3y0=0.(1)又点(x0,y0)在直线x+y-2=0上,∴ x0+y0-2=…  相似文献   

20.
定理 设P是△ABC平面一动点 ,BC=a ,CA =b ,AB =c.则有PAa PBb PCc ≥ ∑a2∑b2 c2 . ( 1 )为证式 ( 1 ) ,先给出两个引理 .引理 1 [1]  设x、y、z∈R .在△ABC中 ,有(x y z) (xPA2 yPB2 zPC2 )≥a2 yz b2 zx c2 xy . ( 2 )引理 2 [2 ]  在△ABC中 ,有PB·PCbc PC·PAca PA·PBab ≥ 1 . ( 3 )式 ( 2 )即著名的Klamkin不等式 ,式 ( 3 )是我们熟知的Hayashi不等式 .定理证明 :在式 ( 2 )中 ,令x =1a2 ,y =1b2 ,z =1c2 ,得  P…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号