首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
一、最简单的知识 1.极坐标与直角坐标的互化公式 2.点的对称性点(ρ,θ)与点(ρ,-θ)或(-ρ,π-θ)关于极轴所在的直线对称.  相似文献   

2.
本文应用极坐标系中过P_1(ρ_1,θ_1),P_2(ρ_2,θ_2)两点的直线方程:sin(θ_2-θ_1)/ρ=sin(θ_2-θ)/ρ_1 sin(θ-θ_1)/ρ_2(ρ_1≠0,ρ_2≠0)来证明几何中关于线段相等的竞赛题。这一直线极坐标两点式可应用坐标互化公式:x=ρcosθ,y=ρsinθ代人直角坐标系两点方程:(x-x_1)/(y-y_1)=(x_2-x_1)/(y_2-y_1)中,通过三角恒等变形得到。例 1 以等边△ABC的边BC作直径向形外作半圆。在这半圆上取点K和L分半圆  相似文献   

3.
题目如图,给出定点 A(a,0)(a>0)和直线 l:x=-1.B 是直线 l 上一动点,∠BOA 的角平分线交 AB 于点C.求 C 的轨迹方程,并讨论方程表示的曲线的类型与 a值的关系.解:如图,如 O为极点,QA 方向为极轴建立极坐标系.设点 C(ρ,θ),点 B(ρ′,2θ).  相似文献   

4.
本文用极坐标法对一几何定理及其推广进行证明。引理已知A、B为圆ρ=2acosθ上二点,它们的极角分别为θ_1和θ_2。从极点O作OH⊥AB,H为垂足。求证:ρ_H=2acosθ_1cosθ_2。证明如图1,∵∠ACO=∠ABO,△OAC和△OHB都是Rt△,∴∠BOH=∠COA=θ_1,∴ρ_H=|OH|=ρ_Bcosθ_1=2acosθ_2cosθ_1。  相似文献   

5.
由平面直角坐标和极坐标的互化公式x=ρcosθ、y=ρsinθ,可得极坐标系中两点P_1(ρ_1,θ_1)、P_2(ρ_2,θ_2)所决定的直线的斜率公式为: K_(p_1P_2)=(ρ_2sinθ_2)-ρ_1sinθ_1)/(ρ_2cosθ_2)-ρ_1cosθ_1)。本文拟应用这一公式来证明平面几何中有关直线互相垂直的一些问题。  相似文献   

6.
如同直角坐标系有平移变换和旋转变换,极坐标系也有平移变换、旋转变换以及位似变换。讨论极坐标的这些变换,能帮助我们化简某些极坐标方程,有助于解决某些极坐标方程的作图问题。 (一) 平移变换 改变极点位置,而极轴方向、长度单位和角度正方向都不改变,这样的变换叫极坐标的平移变换。 如图,O′x是原坐标系的极轴,O′x′是经过平移变换后新坐标系的极轴,O′关于原坐标系的坐标是(ρ_0,θ_0),设平面内任意点M在原坐标系中的坐标是(ρ,θ),在新坐标系中的  相似文献   

7.
在解析几何中,常常遇到轴对称问题,如求已知点关于某直线的对称点,已知直线关于某直线的对称直线,已知曲线关于某直线的对称曲线等.这类问题的一般解题方法是根据已知点与所求的对称点的中点在对称轴上以及这两点的连线与对称轴垂直列方程组求出其对称点的坐标,或利用直线夹角公式求出对称直线的斜率及已知直线与对称轴的交点,用点斜式求出其对称直线,计算量比较大.这类问题在考试中经常出现对称轴的斜率的绝对值为1的情况.对此,当然可以用上述方法求解,不过对于这种特殊情况的问题能不能用更加简捷的方法求解呢?本文对对称轴斜率的绝对值为…  相似文献   

8.
运用极坐标法证明这类问题时,主要利用两点p_1(ρ_1,θ_1)、p_2(ρ_2,θ_2)间的距离公式:|p_1p_2|=(p_1~2+p_2~2-2ρ_1ρ_2cos(θ_1-θ_2))~(1/2)和过这两点的直线p_1p_1的方程:sin(θ_2-θ_1)/ρ=sin(θ_2-θ)/ρ_1+sin(θ-θ_1)/ρ_2。这一公式和方程都可利用坐标互化公式:x=pcosθ、y=ρsinθ代入直角坐标系的相应公式和方程中,结合三角知识得到, 这类问题的证法和步骤是: 第一步,首先按照几何图肜的特点,适当建立极坐标系,并根据题设,设置有关各点的坐标; 第二步,再应用上述公式和方程求出有关线段的  相似文献   

9.
在极坐标系里,平面上的点与其坐标之间的关系不是一一对应的,这是极坐标与直角坐标的根本区别,这种区别根源于点的极坐标的定义而产生的多值性(即同一点的极坐标不只一个)。利用具有这种特性的极坐标来研究某些问题(特别是旋转运动的轨迹)尤其方便,比直角坐标优越得多。本文着重讨论点的极坐标的多值性,并对极坐标的某些应用作初步探讨。一、点的极坐标的多值性。首先,若(ρ,θ)为任意有序实数对,则(ρ,θ)与(-ρ,θ π)都表示同一点的极坐标。 (1)当ρ>0时,以(ρ,θ)为坐标的点M可以唯一地确定:作射线OP,使∠XOP=θ,在OP上取点M,使|OM|=ρ;而-ρ<0,按“规则”([1]P175)确定以(-ρ,θ π)为坐标的点M'的位置:作射线  相似文献   

10.
<正>一、问题提出题目:已知曲线C的极坐标方程是ρ=2cosθ+4sinθ,P点的极坐标为3,(π/2),以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy,在平面直角坐标系中,直线l经过点P,倾斜角为π/3。(Ⅰ)写出曲线C的直角坐标方程和直线l的参数方程。(Ⅱ)设直线l与曲线C相交于A,B两点,求AB的长。问题:求直线与圆锥曲线的交点弦的弦长时,为什么在直线方程是参数方程的情况下要用参数方程中的弦长公式AB=  相似文献   

11.
在极坐标系下,曲线C_i的方程记为 f_1(ρ,θ)=0(i=1,2). 一、交点坐标与方程组解的关系: 所谓方程j(ρ,θ)=0是曲线C的极坐标方程,即满足:①f(ρ,θ)=0的解对应的点都在曲线C上;②曲线C上任一点的极坐标(ρ,θ)都满足方程f(ρ,θ)=0.由于点的极  相似文献   

12.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点A分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱为公共边所成的角分别为θ_1和θ_2,则有: cosθ=cosθ_1 cosθ_2+sinθ_1 sinθ_2 coφ 当印φ=90°时,公式为cosθ=cosθ_1 cosθ_2 证明:(设φ,θ_1,θ_2均为锐角) 如图,∠BAC=θ,∠BAQ=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=a,  相似文献   

13.
题目:求通过圆锥曲线的焦点,并且和焦点所在的对称轴的夹角为θ的直线被圆锥曲线所截的弦长。解:如图建立极坐标系,则圆锥曲线的极坐标方程为ρ=ep/(1-ecosθ)。设直线与曲线交于两点  相似文献   

14.
画双组线ρ~2=2α~2cos2θ的图形,一般用列表描点法,这里介绍用直尺和圆规作图。分析:ρ~2=2α~cos2θρ~2=2α~2(cos~2θ-sin~2θ)ρ~2=(2~(1/2)acosθ)~2-(2~(1/2)αsinθ)~2ρ~2+(2~(1/2)αsinθ)~2=(2~(1/2)acosθ)~2因此,需要构造以长2~(1/2)acoθ~(1/2)(-1/2π<θ<1/2π)为斜边,长ρ和2~(1/2)asinθ~(1/2)为直角边的直角三角形。作法:如图,在极轴上取点A,使OA=2~(1/2)a(a>o),以OA为直径画圆O′,  相似文献   

15.
正1、如图:已知二面角α-MN-β,A∈MN,AB(?)α,AC(?)β,设∠BAN=θ_1,∠CAN=θ_2,二面角α-MN-β的大小为θ_3,∠BAC=θ,那么cosθ=cosθ_1cosθ_2+sinθ_1sinθ_2cosθ_3证明:如图(一)1°、当θ_1、θ_2均为锐角时,在AB上取一点E(异于点A),在平面α内作EG⊥MN,垂足为G,在平面β内作GF⊥MN  相似文献   

16.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱所成的锐角分别为θ_1和θ_2且θ_1,θ_2具有公共边,则有: cosθ=cosθ_1cosθ_2 sinθ_1sinθ_2cosφ。当φ=90°时,公式为cosθ=cosθ_1cosθ_2。证明: 如图,∠BAC=θ,∠BAO=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=α,  相似文献   

17.
文[1]引入了整函数f(z)沿射线L_θ={z:argz=θ}增长的阶ρ_o(θ)为:在L_θ上若f(z)有界,则定义ρ_o(θ)=0;若f(z)无界,而存在一ρ_o≥0,使f(z)在L_θ上对任一ε>0,都有但对任何取负值的ε,它都不成立,则称f(z)在L_θ上是ρ_o阶的,并称L_θ为f(z)的ρ_O阶射线。  相似文献   

18.
例1 如图1,给出定点 A(a,0)(a>0)和直线 l:x=-1,B 是直线 l 上的动点,∠BOA的角平分线交 AB 于点C,求点 C 的轨迹方程,并讨论方程表示的曲线类型与 a 值的关系.(1999年全国高考题)解:以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系如图1所示,设动点 B、C 的极坐标分别为 B(ρ_1,  相似文献   

19.
有关曲线对称性问题的叙述是:(1)以-y代y方程不变,则曲线关于x轴对称。(2)以-x代x方程不变,则曲线关于y轴对称。(3)同时以x代y,以y代x,方程不变,则曲线关于直线y=x对称。(4)同时以-x代y,以-y代x,方程不变,则曲线关于直线y=-x对称。利用上述原理,我们可以很快求得已知曲线方程关于x轴,y轴,直线y=x,或直线y=-x为对称轴的对称方程。如果对称轴不是上述四种,而是另外直线如何求它的对称方程呢? 例1 已知对称轴是直线l:x+y-2=0,求:(1)点P(4,2)关于直线l的对称点P’,(2)直线2x-y-6=0关于直线l的对  相似文献   

20.
圆锥曲线的极坐标方程ρ=ep/(1-ecosθ)……(1)中,当01时,它表示有心的二次曲线(椭圆,或双曲线),如果极坐标方程(1)化成直角坐标方程是(x-m)~2/a~2±y~2/b~2=1……(2),下面给出极坐标方程(1)中顶点的极径ρ与直角坐标方程(2)中a、b、c之间既简单又便于记忆的转化公式。 [定理一] 在极坐标方程ρ=ep/(1-ecosθ)中…(1) 当01)时,设椭圆长轴两端点(或双曲线或实轴两端点)的极坐标分别是(ρ_1,0)和(ρ_2,π),则:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号