首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
证法 1 如图1,设∠BAD=α,∠ CAD=β(0 <α,β <π2 ) ,过 B作BD⊥ AD交 AC于C,则有cosα=ADAB,cosβ=ADAC.又∵S△ B A C=S△ B A D+S△ D A C,∴ 12 · AB· AC· sin(α+β) =12 AB·AD· sinα+12 AD· AC· sinβ.两边同时除以 12 AB·AC,可得sin(α+β) =ADAC·sinα+ADAB· sinβ=cosβ· sinα+cosα· sinβ.运用诱导公式 ,易证α,β不是锐角时 ,式子仍然成立 .图 2证法 2 如图2 ,设∠BAD=α,∠DAC=β(0 <α,β <π2 ) ,作 BD⊥AD交 AC于 C,作BE⊥ AC于 E,则有 ADAC=cosβ,BDAB=sinα,ADAB=…  相似文献   

2.
正1、如图:已知二面角α-MN-β,A∈MN,AB(?)α,AC(?)β,设∠BAN=θ_1,∠CAN=θ_2,二面角α-MN-β的大小为θ_3,∠BAC=θ,那么cosθ=cosθ_1cosθ_2+sinθ_1sinθ_2cosθ_3证明:如图(一)1°、当θ_1、θ_2均为锐角时,在AB上取一点E(异于点A),在平面α内作EG⊥MN,垂足为G,在平面β内作GF⊥MN  相似文献   

3.
集锦     
正余弦和差化积公式的向量证明吴爱龙余建国(江西省丰城中学331100)曾兵(江西省丰城市第一中学331100)文[1]利用面积相等关系给出了正弦和差化积公式的一种构造证法,本文再给出正余弦和差化积公式的向量证法,供参考.图1证明如图1,设OA=(cosα,sinα),OB=(cosβ,sinβ)(0<β<α<π),则OA+OB=(cosα+cosβ,sinα+sinβ);OA-OB=(cosα-cosβ,sinα-sinβ).又以OA,OB为邻边作OACB,因为OA=OB=1,所以四边形OACB为菱形,作OE=BA,设AB与OC相交于D,则BA⊥OC,∠COB=α-2β,∠COx=α+2β,∠EOx=π2+∠COx=π2+α+2β;OC=2·OD=2co…  相似文献   

4.
三角问题几何来处理,这样做能加强知 识之间横向联系,有利于培养学生类比思维 能力,提高学生创新能力. 关于sinα+sinβ=2sinα+β2cosα-β2, cosα+cosβ=2cosα+β2cosα-β2的证明. 在直角坐标系中,把α、β顶点放在原点, 始边与x轴非负半轴重合,α、β终边与单位 圆分别交于A、B两点,所以A(cosα,sinα)、 B(cosβ,sinβ),取点M(1,0),记AB中点为 P,过P作x轴垂线,垂足为E,由中点坐标公 式得sinα+sinβ=2ypcosα+cosβ=2xp 当α、β∈[0,2π]时,∴0≤|α-β|≤ 2π. 1.若|α-β|=0,π、2π时和差化积公 式转化为诱…  相似文献   

5.
定理若α,β为锐角,则cos αsin 2αsin 2β≤(43)/(9).(*) 证明如图1,在对角线为2的长方体ABCD-A′B′C′D′中,设AB=a,BC=b,BB′=c,∠C′AC′=α,∠CAB=β,则a2+b2+c2=22=4,c=CC′=2sin α,AC=2cos α,a=ACcos β=2cos αcos β,b=ACsin β=2cos αsin β,∴此长方体的体积V=abc=2cos αsin 2αsin 2β.  相似文献   

6.
人教A版数学必修4用三角函数线证明两角差的余弦公式 cos (α-β)= cosα cosβ+ sinα sinβ,叙述如下:我们先对简单的情况进行讨论.如图1,设角α、β为锐角,且β<α,角α的终边与单位圆的交点为P 1,∠POP 1=β,则∠xOP=α-β.过点P作垂直于x轴,垂足为M,那么OM就是角α-β的余弦线.这里就是要用角α、β的正弦线、余弦线来表示OM.过点P作PA垂直于OP1,垂足为A,过点A作AB垂直于x轴,垂足为B,过点P作PC垂直于AB,垂足为C,那么OA表示 cosβ,AP表示 sinβ,并且∠PAC=∠P1-1Ox=α.于是OM=OB+BM=OB+CP=OA cos α+AP sin α= cosβ cosα+ sinβ sinα.值得注意的是,以上结果是在α、β、α-β都是锐角,且β<α的情况下得到的.要说明此结果是否在角α、β为任意角时也成立,还要做不少推广工作,并且这个推广工作比较繁难,同学们可以自己动手试一试.  相似文献   

7.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱所成的锐角分别为θ_1和θ_2且θ_1,θ_2具有公共边,则有: cosθ=cosθ_1cosθ_2 sinθ_1sinθ_2cosφ。当φ=90°时,公式为cosθ=cosθ_1cosθ_2。证明: 如图,∠BAC=θ,∠BAO=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=α,  相似文献   

8.
利用构造几何图形来求解或证明代数、三角中的问题,不少期刊对此法都作了介绍,但大多数都是通过构造三角形、矩形或正方形来解(证)的。那么,能否构造梯形作为几何模型呢?答案是肯定的。一、构造梯形证明定理、公式例1 证明两角和的正弦函数的加法公式:设α和β均为锐角,求证:sin(α+β)=sinαcosβ+cosαsinβ。证明:如图1,构造一个直角梯形ACDE,使α和β均为锐角,并且使BB=BD=1,易知AE=sinα,AB=cosα,CD=sinβ,BC=cosβ,而  相似文献   

9.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点A分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱为公共边所成的角分别为θ_1和θ_2,则有: cosθ=cosθ_1 cosθ_2+sinθ_1 sinθ_2 coφ 当印φ=90°时,公式为cosθ=cosθ_1 cosθ_2 证明:(设φ,θ_1,θ_2均为锐角) 如图,∠BAC=θ,∠BAQ=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=a,  相似文献   

10.
题目已知sinαcosβ=-1/2,求cosαsinβ的取值范围.引申1已知sinαcosβ=α,cosαsinβ=b,则|a|+|b|≤1,当且仅当sin~2α+sin~2β=1时等号成立.证明|a|+|b| =|sinα||cosβ|+|cosα||sinβ|≤(sin~2α+cos~2β)/2+(cos~2α+sin~2β)/2=1,  相似文献   

11.
证明几何题时遇到求证两条线段的和等于另一条线段的问题,常采用的两种方法:①合成法:即将短的两条线段A+B合成一条线段D,然后证明D=C成立;②分解法:即将C分解为两条线段D和E,C=D+E,使A=D,然后证明B=E成立,即化归为证明两条线段相等的问题.举例如下:例1如图:在等腰三角形ABC中,底边BC上有任意一点P,过P作PD⊥AB于D,PE⊥AC于E,过C作CF⊥AB于F.求证:PD+PE=CF郾证法1(合成法):过C作CM垂直于DP的延长线于M,∠M=90°郾∵PD⊥AB,CF⊥AB,∴四边形DMCF是矩形郾∴AB∥CM,CF=BM=DP+PM郾∵AB=AC,∴∠B=∠ACB.∵∠B=…  相似文献   

12.
前苏联有一道三角竞赛题: 设锐角α、β满足sin2α+sin2β=sin(α+β). 求证:α+β=π/2. 一般学生容易从求sin(α+β)=1去入手,但经过一番苦思冥想之后,由条件无法求解出sin(α+β)=1这个结果.遇到这种情况,不妨改变一下解题方向,观察条件等式sin2α+sin2β=sin(α+β),即可从sin(α+β)≤1入手,可顺利地证明此题. 证明由sin(α+β)≤1得 sin2α+sin2β≤sin2α+cos2α① sin2α+sin2β≤cos2β+sin2β②  相似文献   

13.
一、三余弦公式及其推论三余弦公式:如图1,PO⊥平面α于O,PA∩α=A,ABα,直线AP与AB成θ角,AP与AO成θ1角,AO与AB成θ2角,则有cosθ=cosθ1cosθ2.证明:如图1,作OB⊥AB于B,连结PB,则PB⊥AB,∠PAB=θ,∠PAO=θ1,∠OAB=θ2,设|PA|=1,则|AO|=cosθ1,|AB|=|AO|cosθ2=cosθ1cosθ2,又|AB|=cosθ,所以cosθ=  相似文献   

14.
利用向量的内积证明关于二面角的公式cosθ=cosαcosβ+sinαsinβcosφ,进而利用该公式给出二面角的一个简便求法.  相似文献   

15.
不等式证明既是高中数学的重点,也是高中数学的难点。化归函数法、放缩法是技巧性较高的不等式证明方法.一、化归函数法例1、已知a,b,c,d∈R,且a2+b2=1,c2+d2=1求证:-14FabcdF41分析:将已条件与sin2α+cos2α=1进行对照,可知本题能通过换元将原不等式问题转化为三角函数求值域的问题来解决.证明:设a=sinα,b=cosα,c=sinβ,d=cosβ]|abcd|=|sinα·cosα·sinβ·cosβ|=14|sin2α·sin2β|F14|sin2α|·|sin2β|F41]-14FabcdF41例2、求证:|a|+|b|1+|a|+|b|E1+|a|+a+b|b|分析:认真观察原不等式两边,不难发现它们…  相似文献   

16.
向量是一种既有大小,又有方向的量.它的运算具有鲜明的几何意义,作为一种用代数方法研究问题的有力工具,它不仅在研究复杂图形方面有着重要作用,在研究初等几何方面也有着广泛的应用.本文就其常见的几种类型举例如下:1在有关定理、命题证明中的应用例1利用向量方法证明公式:cos(α?β)=cosαcosβ+sinαsinβ.证明如右图,在单位圆中做向量OuuAur、OuuBur,与x轴正向的夹角分别为α、β,则点A的坐标是(cosα,sinα),点B的坐标是(cosβ,sinβ),则OuuAur?OuuBur=cosαcosβ?sinαsinβ=OuuAur?OuuBur?cos(α?β),∴cos(α?β)=cosαcosβ+…  相似文献   

17.
一、问题的提出 看这样一个数学问题:若sinαcosβ=1/2,求cosαsinβ的取值范围. 一个典型的错误解法是: 解:因为sin(α+β)=(sinαcosβ+cosαsinβ)∈[-1,1],sinαcosβ=1/2,所以-3/2≤cosαsinβ≤1/2. 它的错误原因在于找到的约束条件不全面,仅考虑了-1≤sin(α+β)≤1.许多参考书上给出的正确的解法是: 解:因为sin(α+β)=(sinαcosβ+cosαsinβ)∈[-1,1],sinαcosβ=1/2,所以-3/2≤cosαsinβ≤1/2, 因为sin(α-β)=sinαcosβ-cosαsinβ=(1-cosαsinβ) ∈[-1,1].  相似文献   

18.
本期问题初209已知x、y为满足x+y=1的正数.求证:1+2x2+1-1y2>2.初210如图1,过圆外一点P引该圆的图1两条割线PAB和PCD,分别交圆于点A、B、C、D,AD和BC相交于点Q,割线PEF经过点Q交圆于E、F,分别过点B、D作EF的平行线交圆于M、N.求证:BN、DM、EF三线共点.高209设α、β、γ∈0,2π,且tanα+tanβ+tanγ=1.求证:sin2α+sin2β+sin2γ≤59.高210给定质数p(p>3),定义S={n|∑p-1k=1kn≡0(modp3),n∈N}.证明:S为无穷集.上期问题解答初207如图2,在锐角△ABC中,CE⊥AB于点E,F为AC上一点,∠A<45°,∠BFC=45°,ED为∠BEC的平分线…  相似文献   

19.
本刊91年第1期《三角函数式的恒等变换与应用》一文的一例及其解答如下: 例12 已知(tg(α+β-γ))/(tg(α-β+γ))=tgγ/tgβ,求证sin2α+sin2β+sin2γ=0 证明:把已知化为 (sin(α+β-γ)cos(α+β-γ))/(cos(α+β-γ)sin(α+β-γ))=sinγcosβ/cosγsinβ由合分比定理,化简得 (sin2α)/(sin2(β-γ))=(sin(γ+β))/(sin(γ-β))  相似文献   

20.
立体几何中有一道习题 ,若用该题的结论来解课本中的其他习题 ,比常规解法显得简便得多 .先看该题 :题目 AB和平面α所成的角是θ1 ,AC在平面α内 ,AC和AB的射影AB′成角是θ2 ,设∠BAC =θ ,求证 :cosθ1 ·cosθ2 =cosθ .证明 如图 1 ,过AB上一点D向平面α作垂线DE ,垂足为E ,显然点E在直线AB′上 ,过E向AC作垂线EF ,垂足为F ,连结D、F ,根据三垂线定理 ,AC ⊥DF .在Rt△ADE中 ,cosθ1 =AEAD,在Rt△AEF中 ,cosθ2 =AFAE,在Rt△ADF中 ,cosθ =AFAD,∴cosθ1 ·cosθ2 =AEAD·AFAE =AFAD =cosθ.结论得证 .…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号