首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、一个重要结论结论直线l:f(x,y)=0将平面分成两个区域,则有“同正异负”,即(1)A(x1,y1),B(x2,y2)在l的同侧(?)f(x1,y1)·f(x2,y2)>0.(2)A(x1,y1),B(x2,y2)在l的异侧(?)(x1,y1)·f(x2,y2)<0.(3)A(x1,y1),B(x2,y2)在l上(?)f(x1,y1)·f(x2,y2)=0.由以上结论,可得推论若点P(x,y)与定点A(x0,y0)在直线l的同侧(?)f(x,y)·f(x0,y0)>0.二、结论的应用1.求取值范围例1已知直线l过点P(-1,2),且与以A(-2,-3),B(3,0)为端点的线段相交,那么直线l的斜率k的取值范围是  相似文献   

2.
1.两个重要结论结论1直线l:f(x,y)=0将平面分成两个区域,则有"同正异负",即(1)A(x1,y1),B(x2,y2)在l的同侧(?)f(x1,y1)·f(x2,y2)>0.(2)A(x1,y1),B(x2,y2)在l的异侧(?)f(x1,y1)·f(x2,y2)<0.(3)A(x1,y1)或B(x2,y2)在l上(?)f(x1,y1)·f(xz,y2)=0.结论2若点P(x,y)与定点A(x0,y0)在直线l的同侧(?)f(x,y)·f(x0,y0)>0.2.应用  相似文献   

3.
若点P(x1,y1),Q(x2,y2)在直线l:f(x,y)=0的两侧,则f(x1,y1)·f(x2,y2)<0,反之也成立.利用这个性质可巧妙解决一类直线斜率的范围问题,现举例说明之.例1已知直线l过点P(-1,2),且与以A(-2,-3),B(3,0)为端点的线段相交,求直线l的斜率k的取值范围.解析原题意等价于点A、B在直线l的两侧或其中一点在直线l上.  相似文献   

4.
下面先介绍一个结论:直线l的方程为Ax By C=0(A、B不同时为零)(1)若M1(x1,y1)、M2(x2,y2)为直线l异侧的任意两点,则(Ax1 By1 C)(Ax2 By2 C)<0.(2)若M1(x1,y1)、M2(x2,y2)为直线l同侧的任意两点则(Ax1 By1 C)(Ax2 By2 C)>0.证明略.应用举例:例1若点A(1,3)和B(-4,-2)在直线2x y m=0的两侧,求m的取值范围.解设f(x,y)=2x y m.∵A(1,3)和B(-4,-2)在直线2x y m=0的两侧,∴f(1,3).f(-4,-2)<0,∴(2×1 3 m)[2×(-4) (-2) m]<0,∴-5相似文献   

5.
一、单项选择题:本大题共12小题,每小题5分,共60分。 1.已知集合A二1(x,力1 4x+y二6},集合B二1(x,y)一3x+Zy二7},则集合AnB是 A,{(l,2)}B.11,2} C.{(2,l)} D.}(一l,一2)l 2.己知X>2,则函数y二x*-共的最小值是 x一2-J一·一_ 14.计算,in(一1665。)-。.160·sin610+.1心90·c佣740二A .4B,3 CZ3.已知函数f(x)D .1 Zx一l二二- 工十a的反函数恰是f(:)本身,则实数a的值为 A.一1 B.IC.一2D.2 4.过点(1,2)且与已知直线Zx十y一6=o垂直的直线方程为 A.Zx一y一3二0 B .x一Zy+3二0 C .x+Zy一3二0 D.一Zx一y+3==0 5.若sino·。oto相似文献   

6.
一、选择题1.在△ABC中,点F分AC所成的比为2:1,G为BF的中点,直线AG与BC交于点E,则点E分BC所成的比是( ). A 1/4; B 1/3; C 2/3;D 3/82.直线z将圆:z。+.y。一2X--4y=0平分,且不过第四象限,那么z的斜率的取值范围是( ). A[0,1/2-]; B Eo,1]; C Eo,23;D Eo,1/2)3.定点M(x。,yo)不在直线z:f(x,.y)=0上,则f(x,y)--f(x。,Y。)=O表示的直线是( ).A过点M且与1垂直; B过点M且与z平行; c不过点M且与z垂直;D不过点M且与z平行4.圆z。+y。一4z+2y+f=0交Y轴于A、B 2点,圆心为P,若么APB=90",则C是( ).A一3;B 3;c 8;D 2订5.直线l过点(一…  相似文献   

7.
一、选择题1 .已知P1(x1,y1)、P2 (x2 ,y2 )分别是直线l上和l外的点 .若直线l的方程是 f(x ,y) =0 ,则方程f(x ,y) -f(x1,y1) -f(x2 ,y2 ) =0表示 (   ) .A .与l重合的直线B .过P1且与l垂直的直线C .过P2 且与l平行的直线D .不过P2 但与l平行的直线2 .已知三点A(-2 ,1 )、B(-3 ,-2 )、C(-1 ,-3 )和动直线l:y =kx ,当点A、B、C到直线l的距离的平方和最小时 ,下列结论中 ,正确的是 (   ) .A .点A在l上  B .点B在l上C .点C在l上  D .点A、B、C均不在l上3 .与圆 (x -a) 2 (y -b) 2 =4(a2 b2 )和圆 (x a) 2 (y b) 2 =4(a2 …  相似文献   

8.
<正>我们知道,若点P(x_1,y_1),Q(x_2,y_2)在直线l:f(x,y)=0的两侧,则f(x_1,y_1)·f(x_2,y_2)<0,反之也成立.利用这个性质可巧妙地解决一类直线斜率的范围问题,现举例说明之.  相似文献   

9.
(Ⅰ)基础知识点 A(x,y)关于直线x=a 对称的点为 B(2a-x,y)。(Ⅱ)知识应用 (Ⅰ)中知识可应用于两个方面:1.将一条曲线 C_1:y=f(x)变换为关于直线 x=a 对称的曲线 C_2:y=f(2a-x);2.若点 A(x,y)和点 B(2a-x,y)的坐标都适合一条曲线 L 的方程 y=f(x),即,有 f(x)=y=f(2a-x),或 f(a x)=f(a-x),则可判定这一曲线 L(自身)关于直线 x=a 对称。反之,亦然。  相似文献   

10.
一、选择题1 设集合 M={x|x~2-x<0),N={x||x|<2},则().A.M∩N=(?) B.M∩N=MC.M∪N=M D.M∪N=R解:由题设得 M={x|00)  相似文献   

11.
概念: (1)曲线C上的点的坐标都是方程f(x,y)=0的解; (2)以方程f(x,y)=0的解为坐标的点都是曲线C上的点, 称方程f(x,y)=0为曲线C的方程.充分利用曲线与方程的关系,可简化问题的求解. 例1 过点P(-1,1),作直线与椭圆x2/4+y2/2=1交于A、B两点,若线段AB的中点恰  相似文献   

12.
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的4个选项中,有且只有一项是符合题目要求的)1.已知直线l1:y=1,l2:3x+y-1=0,那么直线l1与l2的夹角为()(A)60°(B)120°(C)30°(D)150°2.若a,b∈R,且a3>b3,则下列判断正确的是()(A)1a<1b(B)1a>1b(C)ab3.若直线l经过点(3,-3),且倾斜角为30°,则直线l的方程是()(A)y=3x-6(B)y=33x-4(C)y=3x+43(D)y=33x+24.已知F1、F2是椭圆x42+y22=1的两个焦点,P是椭圆上的点,若PF1·PF2=0,则这样的点P有()(A)2个(B)4个(C)6个(D)0个5.抛物线y=-31x2的准线方程是()(A)y=23(B)x=61(C…  相似文献   

13.
常用于判别函数图象对称性的命题可归纳如下:命题1 若函数y=f(x)满足f(a x)=f(b-x),则y=f(x)的图象关于直线x=a b2对称.证 在y=f(x)图象上取A(a x0,y0),B(b-x0,y0),则AB中点为(a b2,y0),且对任一x0都成立,由x0任意性可知f(x)的图象关于直线x=a b2对称.推论1 若函数y=f(x)满足f(a ωx)=f(b-ωx),则y=f(ωx)关于x=12ω(a b)对称,即y=f(x)关于x=a b2对称.证 设ωx=t,则f(a t)=f(b-t),从而函数y=f(t)关于t=a b2对称,即y=f(ωx)关于直线x=a b2ω对称,或y=f(x)关于直线x=a b2对称.命题2 函数y=f(x)若满足f(a x)=-f(b-x),则y=f(x)的图象关于…  相似文献   

14.
将课本例题进行有效的变通及拓展,既能让学生真正掌握所涉及内容又有利于其探究能力的培养,也是提高我们教师处理教材能力的有效途径.全日制普通高级中学教科书(实验修订本·必修)数学第二册(上)第130页图1例2:如图1,直线y=x-2与抛物线y2=2x相交于A、B两点,求证OA⊥OB.证明:设A(x1,y1),B(x2,y2),将直线方程y=x-2代入抛物线y2=2x得:x2-6x+4=0.从而有x1+x2=6,x1·x2=4.又因为y1=x1-2,y2=x2-2,所以y·1y2=(x1-2)(x2-2)=x·1x2-2(x1+x2)+4=-4.∴kOA·kOB=xy11·xy22=yx11yx22=-44=-1.∴OA⊥OB.在讲解完本题之后,我把题目改为:设直线l与抛…  相似文献   

15.
题目过点P(2,1)的直线l交x轴正半轴、y轴正半轴于点A、点B,求△AOB面积S的最小值,并求出此时直线l的方程·这是一类典型的求直线方程的题目,解题的关键是选取直线方程的哪种形式,来建立起三角形面积的表达式,进而采用恰当的方法求出面积的最小值·根据着眼点的不同,本文给出如下一些入手方法·解法1:(用直线的一般式及平均值不等式)设直线l的方程为Ax+By+C=0,直线l过点P(2,1),则有2A+B+C=0,C=-2A-B·在l的方程中,令y=0,得x=-AC>0,则A(-AC,0);令x=0,得y=-BC>0,则B(0,-CB)·所以S=21|OA|·|OB|=21(-AC)·(-BC)=(-22AAB-B)2=2+…  相似文献   

16.
我们知道,若两条相交直线l1:A1x B1y C1=0与l2:A2x B2y C2=0的交点为定点(x0,y0),则直线系A1x B1y C1 λ(A2x B2y C2)=0过定点(x0,y0),特别地,直线系y-y0=k(x-x0)(x0,y0为常数,k为参数)过定点(x0,y0).利用此结论在解某些问题时简单快捷,是减少运算量、缩短解题过程的巧法之一,也增添了学习数学的情趣.一、直线与线段相交求参数【例1】如图1,已知l:y=mx-7及两点A(3,2),B(1,4).若l与线段AB相交,求m的取解值析范:由围y.=mx-7可知直线l恒过定点D(0,-7),连DA、DB.易求kDA=3,kDB=11,由图象知3≤m≤11.这里抓住直线恒过定点是关键.二、直…  相似文献   

17.
一、选择题:(每大题共12小题,每小题5分,共60分·在每小题给出的四个选项中,只有一项是符合题目要求的·)1·若复数z满足z(1-2i)=3+4i,则z等于()(A)-1+4i(2)2+4i(C)2+i(D)-1+2i2·设集合M={x|x≥2},P={x|x>1},那么“x∈M∪P”是“x∈M∩P”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件3·已知f(x)=x-4(x≥6),f(x+2)(x<6),则f(3)=()(A)1(B)2(C)3(D)44·如果α∈(2π,π),且sinα=54,那么sin(α+4π)-22cosα=()(A)252(B)-252(C)452(D)-4525·若圆x2+y2-ax+2y+1=0和圆x2+y2=1关于直线y=x-1对称,过点C(…  相似文献   

18.
王魁兴 《中学数学月刊》2006,(4):46-47,49,F0004
一、选择题1.设函数f(x)=x3(x∈R),当0≤θ≤π2时,f(m sin)θ+f(1-m)>0恒成立,则实数m的取值范围是().(A)(0,1)(B)(-∞,0)(C)(-∞,1)(D)(-∞,12)2.函数f(x)=ax+b(a>0且a≠1)的图象过点(1,1),且00,x2>0且x1≠x2),则p,q的大小关系是().(A)p>q(B)p相似文献   

19.
Ⅰ.正比例函数f(x)=kx(k≠0,x∈R)的抽象函数的特征式为:(1)f(x+y)=f(x)+f(y);(2)f(x-y)=f(x)-f(y);(3)f(xy)=k1f(x)f(y),特别地当k=1时,有f(xy)=f(x)f(y).例1:定义在R上的函数f(x),恒有f(x+y)=f(x)+f(y),若f(16)=4,那么f(2003)=.解法1(基本解法):令x=y=0,得f(0)=2f(0),∴f(0)=0.令y=-x,得f(x-x)=f(x)+f(-x),即f(-x)=-f(x),∴f(x)是奇函数.令y=x,得f(2x)=2f(x),f(22x)=f(2·2x)=2f(2x)=22f(x),…,f(2nx)=2nf(x).又∵f(16)=4,∴f(1)=41.∵f(2003)=f(211-25-23-22-1),∴f(2003)=f(211)-f(25)-f(23)-f(22)-f(1)=(211-25-23-22-1)·f(1)=20403.…  相似文献   

20.
<正>2018年北京高考数学试题理科第19题:已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,QM(向量)=λQO(向量),QN(向量)=μQO(向量),求证:1/λ+1/μ为定值.思考1该试题揭示了抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,QM(向量)=λQO(向量),QN(向量)=μQO(向量),求证:1/λ+1/μ为定值.思考1该试题揭示了抛物线C:y2=4x的一个有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号