首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
解答有关三角形的问题时,常常需要添加适当的辅助线.本文介绍三角形中5种常见辅助线的添加方法.一、延长中线构造全等三角形例1如图1,已知△ABC中,AD是△ABC的中线,AB=8,AC=6,求AD的取值范围.提示:延长AD至A',使A'D=AD,连结BA'.根据“SAS”易证△A'BD≌△AC D,得AC=A'B.这样将A  相似文献   

2.
本文应用构造全等三角形的方式对一类关于角度不等和线段不等的几何题进行证明,供参考. 一、构造全等三角形证两线不等 例1已知AD是△ABC的中线,∠BAD〉∠DAC,求证:AC〉AB. 证明:如图1,延长AD到E,使DE=AD,连结BE.则在△ADC和△EDB中,因为BD=CD,∠ADC=∠EDB,AD=DE,所以△ADC≌△EDB(SAS),所以∠DAC=∠DEB,  相似文献   

3.
探索:将一个三角形沿着一条中线剪开,得两个面积相等的三角形.如图1,沿中线AD将△ABC剪开,得△ABD和△ACD,有S△ABD=S△ACD.再研究一下这两个三角形的边与角,发现AD=AD,BD=CD,∠ADB+∠ADC=180°.猜想:如果两个三角形的边与角之间满足上述条件,这两个三角形面积相等吗?如图2,在△ABC和△A'B'C中,BC=B'C'=a,AC=A'C'=b,∠ACB+∠A'C'B'=180°.我们试将这两个三角形拼合,使A'C'与AC重合.∵∠ACB+∠A'C'B'=180°,∴B'在BC的延长线上.又∵BC=B'C',∴C是△ABB'的边BB'的中点.∴S△ABC=S△A'B'C'.(等底等高)这说明…  相似文献   

4.
在几何计算或论证中,时常可见到与中点、中线有关的问题。合理巧妙地利用中点、中线这一条件作辅助线,构造全等三角形,可使问题迎刃而解。以下试举例说明之。例1.△ABC中,AB=6,AC=4,则中线AD的取值范围为。分析:已知两条线段与未知线段的位置关系分散,设法把它们联系在一起是解题的关键。略解:如图,延长AD至E,使得DE=DA,连结BE,易知△ADC△EDB,BE=AC=4。在△ABE中,由三角形三边关系有:2<2AD<10,从而1相似文献   

5.
三角形的中位线定理揭示了其中位线与第三边的位置关系与数量关系,巧用它可以证明若干与线段中点有关的问题. 例1 如图1,△ABC中,BD 平分∠ABC,AD BD于D,E为AC的中点, 求证:DE∥BC. 证明:延长AD交BC于F. ∵BD平分∠ABC,又AD BD 于D,∴AD=FD,又∵AE= CE,由三角形中位线定理得: DE∥FC,∴DE∥BC.  相似文献   

6.
能够完全重合的两个三角形是全等三角形,它们的对应元素分别相等.应用这个性质解某些数学竞赛题,有时是很方便的.一、比较线段的大小例1如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF,则().A.BE+CF>EFB.BE+CF=EFC.BE+CFFG,∴BE+…  相似文献   

7.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

8.
例1如图1,在△ABC中,AB>AC,AD是BC边上的中线.求证:∠BAD<∠CAD.图1分析注意到AD是BC边上的中线,中线加倍是常见的添辅助线的方法.然后把研究对象集中在△ABE中,由大边对大角,将问题得以解决.证明延长AD到点E,使DE=AD,连结BE,则D是△ADC与△EDB的对称中心,BE=CA,∠E=∠CAD.∵AB>AC,∴AB>BE,∴∠BAD<∠E,从而∠BAD<∠CAD.例2如图2,在△ABC中,D是BC边的中点,ED⊥DF,EF分别交AB、AC于E、F两点.求证:BE+FC>FE.图2分析能否将BE、FC、EF移到同一三角形考察线段不等关系?利用对称性作图是可以实施的,于是问…  相似文献   

9.
三角形是几何中的一种基本图形.解一些几何问题时,若能通过添加辅助线构造出全等三角形,就能使问题化难为易.那么,解题时应该如何构造全等三角形呢?一、已知中线若遇到中线,一般可将其延长一倍来构造全等三角形.例1如图1,在△ABC中,AD是中线,BE与AD交于点F,且AE=EF.试说明线段A  相似文献   

10.
<正>一、平移全等模型例1如图1,点A,B,D,E在同一条直线上,AB=DE,AC//DF,BC//EF.求证:△ABC≌△DEF.解析:根据已知条件,利用“ASA”即可证出△ABC≌△DEF.∵AC//DF,∴∠CAB=∠FDE.∵BC//EF,∴∠CBA=∠FED.∵∠CAB=∠FDE,AB=DE,∠CBA=∠FED,∴△ABC≌△DEF(ASA).反思:可将图1看作是△ABC沿AB方向平移AD的长度得到的全等三角形模型.常见的平移全等三角形模型的呈现形式有图1、图2两种.  相似文献   

11.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

12.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

13.
中点是图形中的特殊点 ,中线、中位线是三角形和梯形中的特殊线段。在解题时 ,如能运用相关性质 ,巧添辅助线 ,可使许多问题得到迅速解决。一、直接利用中点定义和中线的性质例 1 已知 :如图 1,△ ABC中 ,BD和 CE是高 ,M为 BC中点 ,P为 DE中点。求证 :PM⊥ DE。略证 :EM、DM分别为 Rt△ EBC和 Rt△ DBC斜边上的中线 ,故 EM=DM=12 BC。又因 PM为等腰△ MDE底边上的中线 ,故 PM⊥ DE。二、利用中点 ,构造中位线例 2 已知 :如图 2 ,△ ABC中 ,AD是高 ,BE是中线 ,且∠ EBC=30°。求证 :AD=BE。略证 :取 CD的中点 F,…  相似文献   

14.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

15.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

16.
<正>全等三角形是几何图形问题的重要基础知识和工具.构造全等三角形,聚焦整合问题中隐含的关键解题信息,是常见的重要解题策略.辅助线的添加是构造全等三角形的难点.本文从一道典型例题出发,说明怎样自然地选取目标三角形来添加辅助线.一、问题及解题困惑1、问题如图1,在△ABC中,AB=AC,∠CAB为钝角,延长AB到D,延长边CA到E,连结DE,恰有AD=BC=CE=DE,求∠BAC的度数.2、解题困惑(1)在刚弄清问题的已  相似文献   

17.
题目已知:在△ABC 中,AB=AC,D 是 BC 边上一点.求证:AB~2=AD~2+BD·CD.思路分析1:因为 BD、CD 在同一边上,从而考虑相交弦定理,于是作△ABC 的外接圆进行论证.证法1:作△ABC 的外接圆 O,延长AD 交⊙O于 E,连结 BE(如图1),∵AB=AC,∴∠1=∠E.∴△ABD∽△AEB,∴AB~2=AD·AE=AD·(AD+DE)=AD~2+AD·DE.  相似文献   

18.
在几何解题中时常需要辅助线.在含有三角形中线条件的习题中倍长中线是一种重要的添加技巧,它可以将许多较为分散的条件相对集中,从而架设已知与未知的桥梁.现就倍长中线的方法举几例说明.例1如图1,△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=12AB.简析虽然AC、AB在同一个三角形中,但无法证得结论.想到BD=DC,即AD是中线,可倍长中线,即延长AD至E,使DE=AD,再连结BE,则易证得△BDE≌△CDA.于是∠E=∠CAD,BE=AC.而AD⊥AC,则∠E=90°.在Rt△AEB中,∠BAD=ABEDC图1CADEB图230°,所以BE=12AB,故AC=12AB.例2如图2,…  相似文献   

19.
全等三角形是解决初中数学中图形问题的重要的基础知识和工具.通过构造全等三角形,整合问题中隐含的解题信息,是常见的解题策略.本文以一道典型的求角度问题为例,从边入手,使解题需要的全等三角形自然生成.一、问题及解题困惑题目如图1,在△ABC中,AB=AC,∠CAB为钝角,延长AB到点D,延长CA到点E,连结DE,恰有AD=BC=CE=DE,求∠BAC的度数.  相似文献   

20.
三角形的中线可将原三角形分成面积相等的两个三角形.如图1,AD是△ABC的中线,则有S△ABC=S△ADC=1/2S△ABC,利用这个性质,可以巧妙地求出一些三角形的面积.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号