首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
直线和圆的位置关系是平面解析几何的重要内容,体现了运用代数方法处理几何问题的重要思想,是高考考查的重点.解决该问题的抓手是圆心到直线的距离.无论是直线和圆的基本问题或是综合问题,只要紧紧抓住圆心到直线的距离这个量,问题都可以得到有效的解决.  相似文献   

2.
3.
有一些复杂的代数问题,通过分析发现它们蕴含着直线与圆的几何直观。解题时我们若能根据题目的条件,适时构造直线和圆,把问题转化为直线与圆的位置关系来处理,往往能比较直观而易于解决。下面通过实例来进行归类分析。  相似文献   

4.
曲线和圆的位置关系这一单元是学习“圆”这一章的重点和难点,也是学好平面几何的关键单元之一。  相似文献   

5.
我们知道,直线和圆的位置关系有:相离,相切,相交三种.若设圆的半径为r,圆心到直线的距离为d,则有:(1)当d〉r时,直线和圆相离;(2)当d=r时,直线和圆相切;(3)当d〈r时,直线和圆相交.在解题中,如果我们适时的利用直线和圆的位置关系,可以简捷、巧妙的解决许多问题,有着不平凡的功效.下面举例说明它的若干应用。  相似文献   

6.
例1在平面直角坐标系xOy中,已知点A(-1,0)、B(1,0),动点C满足条件:△ABC的周长为2+221/2.记动点C的轨迹为曲线W.(1)求W的方程;(2)经过点(0,21/2)且斜率为k的直线l与曲线W有两个不同的交点P和Q,求k的取值范围;(3)已知点M(2,0),N(0,1),在(2)的条件下,是否存在常数k,使得向量(?)+(?)与(?)共线?如果存在,求出k的值;如果不存在,请说明理由.解:(1)设C(x,y),因为| AC |+| BC |+| AB |=2+221/2,| AB |=2所以| AC |+| BC|=221/2>2,所以由定义知,动点C的轨迹是以A、B为焦点,长轴长为221/2的椭圆除去与x轴的两个交点.所以a=21/2,c=1.所以b2=a2-c2  相似文献   

7.
我们知道,直线和圆的位置关系有相离、相切、相交三种,若设圆的半径为r,圆心到直线的距离为d,则有(1)当d>r时,直线和圆相离;(2)当d=r时,直线和圆相切;(3)当d相似文献   

8.
一、数形结合,善于观察图形,充分运用平面几何知识,寻找解题途径例1 已知点P(5,0)和圆O:x2 +y2=16,过P作直线l与圆O交于A、B两点,求弦AB中点M的轨迹方程.解:因为点M是弦AB中点,所以∠OMP=90°.点M是在以OP为直径的圆周上,此圆的圆心为(5/2,0),半径为5/2,其方程为(x-5/2)2+y2=(5/2)2,即 x2+y2-5x=0.  相似文献   

9.
某些不等式问题,若能巧妙的构造直线与圆,利用直线与圆的位置关系来解,可以优化解题过程,化难为易.1证明不等式例1对一切x、y∈R,求证:x2 y2 x2 (y-1)2 (x-1)2 y2 (x-1)2 (y-1)2≥22.分析将4个无理式转译成4个两点间的距离.证明对一切x、y∈R,原式左端看作点P(x,y)与定点O(0,0)、A(0,1)、B(1,0)、C(1,1)的距离之和,|PA| |PB|≥|AB|,|PO| |PC|≥|OC|于是|PA| |PB| |PO| |PC|≥|OC| |AB|=22,当且上仅面当的P无为理OC式与用A代B数的方交法点很时难取证得明等,号但.赋予其几何意义后,不等式证明得很轻松,体现出解析几何中数形结…  相似文献   

10.
~~《直线和圆的位置关系》问题举例!山西@张振香  相似文献   

11.
一、提出问题 我们知道在判断直线与圆的位置关系时有两种方法:判别法、公式法(判别d与R的关系)显然公式法来得简捷方便.而在判断直线与椭圆的位置关系时一般用判别法来求解,此时运算量往往比较大且容易出错,给学生造成了一定的压力,特别在含有参变量的时候.那么由圆通过压缩而来的椭圆,在判断直线与椭圆的位置关系时能否与圆一样具有一定的公式呢?回答是肯定的!  相似文献   

12.
一、填空题1 在△ABC中 ,AB =AC ,∠BAC =12 0° ,⊙A与BC相切于D ,与AB相交于E ,则∠ADE等于度 .(2 0 0 1年江苏省南京市中考题 )2 已知 :如图 2 ,在Rt△ABC中 ,∠C =90°,AC =2 ,BC =1.若以C为圆心 ,CB长为半径的圆交AB于点P ,则AP= . (2 0 0 1年江苏省宿迁市中考题 )3 已知⊙O的半径为 4cm ,AB是⊙O的弦 ,点P在AB上 ,且OP =2cm ,PA =3cm ,则PB =cm .(2 0 0 1年江苏省南京市中考题 )图 1图 2图 3图 4   4 已知 :如图 3,⊙O的弦AB平分弦CD ,AB =10 ,CD =8,且PA …  相似文献   

13.
<正> 设圆O的半径为r,圆心O到直线l的距离为d,则(1)d>r(?)l和圆O相离;(2)d=r(?)l和圆。相切;(3)d相似文献   

14.
15.
一、知识要点1.直线国的位置关系;相高、相切和相交.2.切线的定义、性质、判定和作法。3.切线长的定义和切线长足及.4.割线的定义.5.圆中的比例线段──圆幂定理。6.弦切角的定义和弦切角定理.7.圆外切多边形的定义和圆外切四边形的性质.二、解题指导例1 如图1,AB是半圆O的直径,DO⊥AB于O,C是AB上一点,AC交OD于F,且DF=DC,AD交HB于E,求证:(1)DC是O的切线八2)D、丘、F、C四点共图:(南通,1994年)分析连结OC,则LOHC一z0CA.要证附HC是co的切线一OC上CH一z0CD—goo本上OCA+zACD—90o仁z0AC…  相似文献   

16.
蝶翼渔薰霆皇 卫.如图1,AB是00的直径,弦CD土AB,垂足为召,F是召C的中点,延长且F交00于E,CF=2,AF二3,则EF=_. 2.等腰直角三角形的外接圆半径为5,则内切圆半径为_. 3.如图2月B切00于A,OC为00的半径,乙C=500,则乙I]AC=_. 4。00到直线Z的距离为d,00的半径为尺,且d、R是方程尹一4无 m=0的根,当直线z与00相切时,m的值为__. 5.圆外切等腰梯形的底角为300,中位线长为a,则圆的半径为___. 6.如图3,cIj是00的直径,几E切00于点召,DC的延长线交液B于点几,乙A=200,则乙DB刃二全兰过 BE 图3 A ,一B、︸/匕勺一廷|址!图一.llJA仁 B右ha7.如…  相似文献   

17.
18.
同一平面内,直线和圆有三种位置关系:相交、相切或相离.本文通过解读北师大版教材《数学》九年级下册中的一道例题,归纳直线与圆的位置关系中有关题目的解题思想方法.  相似文献   

19.
一直线与圆的三种位置关系(利用直线与圆的公共点的个数定义圆与直线的位置关系)1.相交如果一条直线与圆有两个公共点,那么就说这条直线与这个圆相交,直线叫圆的割线,这两个公共点叫交点.2.相切如果一条直线与圆有且只有一个公共点,那么就说这条直线与这个圆相切,这条直线叫圆的切线,这个公共点叫切点.3.相离如果一条直线与圆没有公共点,那么就说这条直线与这个圆相离.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号