首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
涉及三等分角线的又一定理   总被引:1,自引:0,他引:1  
莫勒定理是涉及三等分角线的著名定理,类比三角形的内心与旁心,可得到一个令人吃惊而又全然意外的结论: 定理如图,设AE和AF,BD和BF,CD和CE分别是∠A,∠QBC,∠PCB的三等分线,则△DEF是正三角形,且其边长为8RsinA/3sin(60°-B/3)sin(60°-C/3),其中R为△ABC的外接圆半径。证明:需引入下列两个三角恒等式: (1)sinθ =4sinθ/3sin(60°-θ/3)sin(60°+θ/3). (2)sin~2α+sin~2β十2sinαsinβcos(α+β) =sin~2(α+β). 在△BCD中,由正弦定理得  相似文献   

2.
繁多的三角函数公式中最基本的是正弦和余弦的加法定理:sin(α±β)=sinα·cosβ±cosα·sinβcos(α±β)=cosα·cosβ±sinα·sinβ为了便于记忆,上述公式可以概括成下面的口诀:“正弦交叉不变号,余弦变号不交叉”.  相似文献   

3.
我们知道,在△ABC中,由正弦定理可知: sinA/sinB=a/b,(*) 又当A>B时,a>b,由(*)得 sinA>sinB; 反过来,当sinA>sinB时,由(*)得a>b,从而 A>B。由此可得如下定理: 定理:若0°<α+β<180°,则α<βsinα相似文献   

4.
三角恒等变形,公式繁多,技巧性强,不易熟练掌握.但如果在“变”字上下功夫,常可抓住关键,找到解题途径.一、变角对已知角进行和、差、倍、半角等各种形式的合理变换,有利于某些三角函数化简求值.例1(1997年高考题)sin7°+cos15°sin8°cos7°+sin15°sin8°的值为.解:由7°=15°-8°,利用差角正弦和余弦公式,化简得原式=sin15°cos15°=1-cos30°sin30°=2-3.练习(1992年高考题)已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求sin2α的值.二、变项对于某些三角函数化简,求值问题,若添项或拆项等,则往往能一举成功.例2(1994年高考题)…  相似文献   

5.
如图:ABCD是由两个斜边是1的直角三角形组成,且∠BAD=∠BCD=90°,∠ADB=α,υ∠BDC=β,(0°<α,β<90°)则 AC=sin(α+β),AD=cosα,CD=cosβ。在△ACD中, AC~2=AD~2+CD~2-2AD·CDcos(α+β),即 cos~2α+cos~2β-2cosαcosβcos(α+β) =sin~2(α+β)。这时我们只要令α+β为  相似文献   

6.
题:方程8x~2+6kx+2k+1=0的两个根是直角三角形两锐角的正弦,求k的值。解设直角三角形两锐角为α、β、根据一元二次方程根与系数的关系得: sinα+sinβ=-6k/8 ① sinα·sinβ=(2k+1)/8 ②∵α+β=90°∴sinβ=cosα∴①、②两式可变为:sinα+sinα=-3k/4 ③sinα·cosα=(2k+1)/8 ④③式平方,得 1+2sinαcosα=9k~2/16,  相似文献   

7.
<正> 形如ab=cd+ef的几何问题,其思路不易展开,用“三角法”也有一串冗长的演算。今介绍一个三角恒等式用来证明这类几何问题,它可以省去添加辅助线和冗长计算的麻烦。 三角恒等式。 若α+β+γδ=π, 则sin(α+β)·sin(β+γ)=sinα·sinγ+sinβ·sinγ……(1) 证明:α+λ=π-(β+δ)、∴cos(α+γ)=-cos(β+δ)  相似文献   

8.
☆基础篇课时一锐角三角函数诊断练习1.填空题 1.如图,Rt△ABC中锐角α,sinα=__,cosα=__tanα=C.cotα=__.(2)若α为锐角,β=90°-α,则sinβ=__,α,cosβ=__α,tanβ=__α,cotβ=α.(3)填>、<或=号;若0≤α≤β≤90°时,则sinα__sinβ,cosα__cosβ,tanα__tanβ,cotα__cotβ.(4)计算2.选择题(1)α是锐角,且sinα-cosα=0,则α为( )(A)30°.(B)45°.(C)60°.(D)10°.(2)Rt△ABC中,∠C=90°,α=5,c=7,sinβ、cosβ的值分别为( )  相似文献   

9.
1.化简 (1+cos2α)/(ctg α/2-tg α/2).2.求值 log_2sin22.5°+log_2cos22.5°3.已知α、β是锐角,且 cosα=1/7,cos(α+β)=-11/14求β.4.设90°0.5.设α、β是锐角三角形二锐角,求证  相似文献   

10.
三角学中的加法定理是指sin(α±β),cos(α±β)与sinα,sinβ,cosα,cosβ的关系,其中α、β是任意角,这四个基本公式,只需推导出其中的一个,就可以利用诱导公式和变量代换得出另外三个。究竟先推导哪一个公式为好呢?从50年代至今,已经使用了三种不同的编排,这种在教材上一变而再变的编排,说明在推导公式的过程中,有不尽如人意之处。  相似文献   

11.
1.用公式求值例1.求tg67°30′的值解一:tg135°/2=(1-135°/1+135°)~(1/2)=(1+cos45°/1-45°)~(1/2) =((1+cos45°)~2/sin~245°)~(1/2)=(1+cos45°)/sin45°解二:tg67°30′=sin135°/1+cos135° =(2~(1/2)/2)/1-2~(1/2)/2=2~(1/2)+1 解三:tg67°30′=1-135°/sin135°=(1+45°)/sin45° =(1+2~(1/2)/2)/2~(1/2)/2=2~(1/2)+1 上面三种解法,以解三为最简便。一般说来,如果α的正弦和余弦都知道,或者α为特殊角,那么,用公式Tα/2=(1-cosα)/sinα=sinα/(1+cosα)求值比较方便,特别用tgα/2=(1-cosα)/sinα最为方便,因为它的分母为单项式。但如果只知道cosα的值,α又不是特殊角,一般说用Tα/2=±(1-cosα/1+cosα)~(1/2)求值好些。  相似文献   

12.
利用构造几何图形来求解或证明代数、三角中的问题,不少期刊对此法都作了介绍,但大多数都是通过构造三角形、矩形或正方形来解(证)的。那么,能否构造梯形作为几何模型呢?答案是肯定的。一、构造梯形证明定理、公式例1 证明两角和的正弦函数的加法公式:设α和β均为锐角,求证:sin(α+β)=sinαcosβ+cosαsinβ。证明:如图1,构造一个直角梯形ACDE,使α和β均为锐角,并且使BB=BD=1,易知AE=sinα,AB=cosα,CD=sinβ,BC=cosβ,而  相似文献   

13.
错在哪里?     
一、广西东兰中学宋全宁来稿题:设方程x~2-2mx+m+2=0有两个实根,且分别为某直角三角形两锐角正弦的四倍,求m的值。解设直角三角形两锐角分别认α、β,则方程之二根为4sinα和4sinβ=4sin(90°-α)=4cosα,分别代入方程,得 16sin~2α-8msinα+m+2=0和16cosα~2-8mcosα+m+2=0 ∴m=(16sin~2α+2)/(8sinα-1)和m=(16cos~2α+2)/(8cosα-1) 即(16sin~2α+2)/(8sinα-1)=(16cos~2α+2)/(8cosα-1)解得锐角α=45°  相似文献   

14.
一从一道题目谈起某教师在讲述了三角形内角和定理后(以下简称定理),出了这样一道巩固性练习题: (口答) 下列三个角能否为一个三角形的三内角?为什么? (1) 44°、66°、80°,(2) 75°、3°、70°。教师口述的答案是(1)不能,因为44°+66°+80°≠180°(2)能,因为75°+35°+70°=180°。显然,出题的本意是巩固定理,但答案(1)的根据是定理的逆否命题,(2)的根据是定理的逆命题,如果说由命题与其逆否命题的等效性认为(1)的答案无可非议,那么答案(2)是缺乏依据的,因为初中《几何》课本上根本没提到这个逆命题,其真假性亦不得而知,下面探讨定理之逆命题的真假性。二逆命题的探讨逆命题:若α+β+γ=180°(α、β、γ均正),则  相似文献   

15.
高中实验修订课本数学第一册(下)的 4.7部分有这样两个三角恒等式: sinα+sinβ=2sinα+β2cosα-β2; cosα+cosβ=2cosα+β2cosα-β2. 这两个三角恒等式通常叫做和差化积公 式,有了它们,我们可容易推出: 定理:(1)sinα+sinβ2≤sinα+β2 (当且仅当α=β时等号成立); (2)cosα+cosβ2≤cosα+β2 (当且仅当α=β时等号…  相似文献   

16.
本刊91年第1期《三角函数式的恒等变换与应用》一文的一例及其解答如下: 例12 已知(tg(α+β-γ))/(tg(α-β+γ))=tgγ/tgβ,求证sin2α+sin2β+sin2γ=0 证明:把已知化为 (sin(α+β-γ)cos(α+β-γ))/(cos(α+β-γ)sin(α+β-γ))=sinγcosβ/cosγsinβ由合分比定理,化简得 (sin2α)/(sin2(β-γ))=(sin(γ+β))/(sin(γ-β))  相似文献   

17.
一、直接套用公式法例1求tan155°-tan20°+tan155°tan20°的值.解∵155°-20°=135°,∴-1=tan135°=tan(155°-20°)=1t+anta1n5155°5-°ttaann2200°°.由tan155°-tan20°1+tan155°tan20°=-1,得tan155°-tan20°=-(1+tan155°tan20°).故tan155°-tan20°+tan155°tan20°=-1.例2已知tan(π4+α)=12,求:(1)tanα的值;(2)sin2α-cos2α1+cos2α的值.解(1)∵tan(π4+α)=1t-ant aπ4nπ+tanα4tanα=1+tanα1-tanα=12,∴tanα=-31.(2)sin12+αc-osc2oαs2α=2sinα2ccoosαs2α-c os2α=2tan2α-1=2×(-13)-12=-65.二、降幂法例3若si…  相似文献   

18.
在本刊八一年第三期《怎样证明三角恒等式》一文中,有这样一道例题(P24例18):若sinβ=k·sin(2α+β); 求证:tg(α+β)=(1+k)/(1-k)tgα。原文证明如下:[解1].由已知条件得: k=sinβ/(βsin(2α+β));由待证之式得 k=(tg(α+β)-tgα)/(tg(α+β)+tgα)然后设法证明了两者相等。[解2].由已知得:(sin(2α+β))/sinβ=1/k;利用合分比定理与正余弦的和差化积公式,从此式推出待证之式。  相似文献   

19.
三点共线定理是指:如图1,若∠BAD=α,∠CAD=β,AB=a,AC=b,AD=m,那么,B、D、C三点共线的充要条件是。 sin(α+β)/m=sinβ/a+sinα/b。证明:∵B、D、′C三点共线的充要条件是 S_(△ABC)=S_(△ABD)+S_(△ADC)(?)1/2ab sin(α+β) =1/2am sinα+1/2bm sinβ(?)sin(α+β)/m =sinβ/a+sinα/b。证毕。有些几何问题采用上述定理求解,大有以简驭繁,化难为易,新颖轻巧,别有奇妙之效。下面试举  相似文献   

20.
证法 1 如图1,设∠BAD=α,∠ CAD=β(0 <α,β <π2 ) ,过 B作BD⊥ AD交 AC于C,则有cosα=ADAB,cosβ=ADAC.又∵S△ B A C=S△ B A D+S△ D A C,∴ 12 · AB· AC· sin(α+β) =12 AB·AD· sinα+12 AD· AC· sinβ.两边同时除以 12 AB·AC,可得sin(α+β) =ADAC·sinα+ADAB· sinβ=cosβ· sinα+cosα· sinβ.运用诱导公式 ,易证α,β不是锐角时 ,式子仍然成立 .图 2证法 2 如图2 ,设∠BAD=α,∠DAC=β(0 <α,β <π2 ) ,作 BD⊥AD交 AC于 C,作BE⊥ AC于 E,则有 ADAC=cosβ,BDAB=sinα,ADAB=…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号