首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我们知道,对于任意两个正实数a、b恒有不等式:a~(a-b)≥b~(a-b)(※)成立。本文利用这一不等式给出几个难度较大的不等式的简洁证明。例1 已知a、b、c∈R~+,求证: a~(2a)b~(2b)c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b)(1978年上海市中学数学竞赛试题) 证明由(※)得 a~(a-b)≥b~(a-b),b~(b-a)≥c~(b-c),c~(c-a)≥a~(c-a)。以上不等式两边分别相乘得 a~(a-b)·b~(b-c)·c~(c-a)≥b~(a-b)·c~(b-c)·a~(c-a)。整理得:a~(2a)·b~(2b)·c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b) 例2 设a、b、c∈R~+.求证: a~ab~bc~c≥(abc)(a+b+c)/3(1974年美国第三届奥林匹克竞赛试题)。证明由例1知  相似文献   

2.
1981年,高灵得到不等式(1):a′(-a+b+c)+b′(a-b+c)+c′(a+b-c)≥4(3ΔΔ)~(1/2).本文给出一个加强.定理 a,b,c,a′,b′,c′与Δ,Δ′分别表示两个三角形 ABC 和 A′B′C′的边和而积,则a′(-a+b+c)+b′(a-b+c)+c′(a+b-c)≥4(3ΔΔ)~(1/2)+2((ab′)~(1/2)-(a′b)~(1/2))~2等式当且仅当ΔABC 与ΔA′B′C′均为正三角形时成立.应用如下两条引理立得:引理1(2)符号如定理,则  相似文献   

3.
不等式a b≥2(ab)~(1/2)是中学数学中一个用得很广的基本不等式,但在应用中常见一些错误,现举几例. 一、忽视了a b≥2(ab)~(1/2)成立条件而导致的错误例1 设a、b、c为正数,求证(a b c)~3≥27(a b-c)(b c-a)(c a-b) 错误证法: ∵a b c=(a b-c) (b c-a) (c a-b)>0 ∴(a b-c) (b c-a) (c a-b)≥3((a b-c)(b c-a)(c a-b))~(1/2) 即(a b c)~3≥27(a b-c)(b c-a)(c a-b) 分析:虽a>0,b>0,c>0,但a b-c,b c-a,c a-b不一定都大于0,而x y z≥3(xyz)~(1/2)的中x、y、z必须都大于0.  相似文献   

4.
一、比较法(包括“作差法”和“作商法”)“作差法”即根据“‘a≥b’等价于‘a-b≥0’”,将要证明的“a≥b”型不等式转化为“a-b≥0”型不等式去证.其基本步骤是:1.作差;2.变形;3.与0比较大小.其中的“变形”可以变成平方和,也可以变成因式的积或常数.“作商法”即根据“a,b>0时,‘a>b’等价于‘ba>1’”,将要证明的“a>b”型不等式转化为“ab>1”去证.其基本步骤是:1.作商;2.变形;3.与1比较大小.例1若a,b缀R+,n,k缀N,且n>k,求证:an+bn≥akbn-k+an-kbk(当且仅当a=b时,取“=”号).证明an+bn-(akbn-k+an-kbk)=(ak-bk)(an-k-bn-k).又k,(n-k)…  相似文献   

5.
一个不等式变形的应用   总被引:1,自引:0,他引:1  
著名的Jacobsthal不等式定义为): 设x≥0,y≥0,对任意正整数n,则有x~n (n-1)y~n≥(nxy)~(n-1). 当y>0时,可变形为x~n/y~(n-1)≥nx-(n-1)y.(*) (*)式实际上也可看作一个降幂型不等式,从而看出对于一些次数较高的不等式,可以通过(*)式转化成低次来处理,下举例说明. 例1 设a,b,c为正数,求证: a~2/(b c) b~2/(c a) c~2/(a b)≥(a b c)/2. (第二届“友谊杯”国际数学邀请赛题) 证明 由(*)式,注意到 4a~2/(b c)=(2a)~2/(b c)≥2(2a)-(b c)=4a-b  相似文献   

6.
一、有理不等式的解法 例1 解关于x的不等式 解 对原不等式去括号、移项、合并同类项,得: ,显然ab≠0. (i)当a、b同号且a≠b时,有x>-a+b/a-b. (ii)当a、b异号时,有x<-a+b/a-b. (iii)当a=b时,有x∈Φ(?). 方法小结将复杂的一元一次不等式转化为基本形式ax>b或ax相似文献   

7.
设a,b,c为三角形的三边长,证明: ∑a~2b(a-b)≡a~2b(a-b)+b~2c(b-c)+c~2a(c-a)≥0 (1) 这是第24届IMO的一道试题. 经探讨,我们得到了与(1)类似的如下不等式: ∑a~3b(a-b)≥0 (2) ∑a~4b(a-b)≥0 (3) 证令a=y+z,b=z+x,c=x+y,并记σ_1=x+y+z,σ_2=xy+yz+zx,σ_3=xyz(x,y,z>0),则∑a~3b(a-b)=∑(σ_1-x)~3(z+x)(y-x)=∑(σ_1-x)~3(σ_2-x~2-2xz)=σ_2∑(σ_1~3-3σ_1~2x+3σ_1x~2-x~3)-∑(x+2z)(σ_1~3x-3σ_1~2x~2+3σ_1x~3-x~4)  相似文献   

8.
<正> 在初一数学中,大家学习了下面的两个完全平方公式:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.两式相减得如下的“积化和差”平方差公式: 定理1 4ab=(a+b)2-(a-b)2. (1) 由于(a-b)2≥0,故由(1)式又得下面的积化和的完全平方不  相似文献   

9.
代数不等式是中学中的一个重要内容,由于它本身具有完美的形式及证明的灵活性,往往可以考察学生的分析能力和应变能力,在这里仅介绍一些证明不等式常用的方法和变形技巧。 一,比较法; 要证明一个不等式A>B可以作一个差证明A—B>0;当B>0时,可以作一个商A/B>1证明 例:已知:a,b∈R~ ,n∈N,求证:(a b)(a~n b~n)≤2(a~(n 1) b~(n 1)) 证明:(a b)(a~n b~n)-2(a~(n 1) b~(n 1)) =a~(n 1) a~nb ab~n b~(n 1)-2a~(n 1)-2b~(n 1) =ab~n ba~n-a~(n 1)-n~(n 1) =a(b~n-a~n) b(a~n-b~n) =(a—b)(b~n-a~n) Ⅰ)当a>b>0时,b~n-a~n<0,a-b>0 (b~n-a~n)(a—b)<0 Ⅱ)当b>a>0时,b~n-a~n>0,a-b<0 (b~n-a~n)(a—b)<0 Ⅲ当a=b>>0时,b~n-a~n=0,a-b=0 (b~n-a~n)(a-b)=0 综上Ⅰ,Ⅱ,Ⅲ,有(a-b)(a~n b~n)-2(a~(n 1) b~(n 1))≤0 (a—b)(a~n b~n)≤2(a~(n 1) b~(n 1))  相似文献   

10.
短文集萃     
绝对值不等式的应用设a、b∈R,则有不等式 (1) |a b|≤|a| |b|,仅当ab≥0时取“=”号。 (2) |a-b|≥|a|-|b|,仅当(a-b)·b≥0时取“=”号。这两个不等式的证明都很简单,从略。它们在解题中有广泛的应用。 [例1] 解不等式:|x lgx|<|x| |lgx|。解:由(1)知仅当xlgx<0对原不等式成立, ∴0相似文献   

11.
题目 (2017年高考全国Ⅱ卷文科数学第23(Ⅱ)题)已知a>0,b>0,a3 +b3=2.证明:a+b≤2. 证法1不等式的变形. 因为a>0,b>0,a3 +b3=2, 所以a+b>0,且(a-b)2≥0. 从而(a+b)(a-b)2≥0,即有 a2b+ab2≤a3 +b3=2. 不等式两边同乘以3得 3a2b+3ab2≤6.不等式两边同加a3+b3得 a3 +b3 +3a2b+3ab2≤8,即 (a+b)3≤8,所以a+b≤2. 证法2反证法.  相似文献   

12.
将完全平方公式(a+b)~2=a~2+2ab+b~2,(a-b)~2-2ab+b~2进行变形后易得以下几个公式:a~2+b~2=(a+b)~2-2ab=(a-b)~2+2ab,(a+b)~2=(a-b)~2+4ab(a-b)~2=(a+b)~2-4ab,(a+b)~2-(a-b)~2=2(a~2+b~2),(a+b)~2-(a-b)~2=4ab,(和差化积公式)ab=(a+b/2)~2-(a-b/2)~2.(积化和差公式)  相似文献   

13.
1简单结论 若a,b均为正数,则有 a3 +b3≥a2b+ab2.(1) 这是一道容易的试题,只要作差即可得证,证明过程如下: a3 +b3-a2b-ab2 =(a2-b2)(a-b) =(a+b)(a-b)2≥0. 当且仅当a=b时上述等号成立.我们把它称为结论(1). 2精彩应用 案例1 (2017年高考全国Ⅱ卷文科数学试题)已知a>0,b>0,a3 +b3 =2,证明:a+b≤2.  相似文献   

14.
一些代数问题,直接求解运算量大,难以奏效.但如果恰当进行三角代换,配之以众多三角公式,常能化难为易,顺利求解.下面按题型分别举例说明.一、证明不等式例1(2000年希望杯试题)已知a>b>c,求证:1a-b+1b-c+4c-a≥0.证明:∵a>b>c,∴a-b,b-c,a-c均为正数,又因a-b+b-c=a-c,故可设a-b=(a-c).cos2α,b-c=(a-c).sin2α,(0<α<π2)代入原不等式,即有sec2α+csc2α-4≥2+tan2α+cot2α≥4显然成立.故原不等式成立.例2设a,b∈R+,求证:a3b+b3a≥12(a+b)2.证明:设a+b=m,则可令a=m.cos2α,b=m.sin2α,α∈(0,π2)则原不等式等价于cos6αsin2α+sin6αcos2…  相似文献   

15.
两向量的数量积具有性质:(a-b)2≥0,当且仅当a=b时上式取"="号. 以下从几个方面举例说明其应用.  相似文献   

16.
第24届IMO中有这样一道题:在△ABC中,a,b,c分别为其三边的长,求证:w=a2b(a-b) b2c(b-c) c2a(c-a)≥0.有一名选手给出了如下的证法:  相似文献   

17.
设a、b、c是三角形的三边长,则有a^2b(a-b) b^2c(b-c) C^2a(c-a)≥0.(1)不等式(1)最早由Catalan提出,故被人们称为Catalan不等式.1983年,它又被选为第24届IMO试题,重  相似文献   

18.
不等式是高中数学的重要内容之一,是解决数学问题的重要工具,不等关系与不等式的性质是解、证不等式的基础.在学习不等式的性质时,要特别注意以下几点:1.对任意两个实数a、b有a-b>0a>b,a-b=0a=b,a-b<0a相似文献   

19.
1从实数的性质说起由于实数有“大小可比性”,因此才有关于实数的“不等式”.由于实数的平方有“不负性”,因此才有了正数的“平均不等式”.设x∈R,则有x~2≥0,令x=a-b,则有(a-b)2≥0a~2 b~2≥2ab,用a替代a~2,用b替代b~2,则有a b≥2ab,于是得到(a b)/2≥ab(a=b时等号成立).这就是著名的平均不等式:2个正数的算术平均数不小于它们的几何平均数.显然,要证明这个不等式的正确性,可用配方法回到“实数平方的不负性”上.证明因为a2 b-ab=a-22ab b=12(a-b)2≥0a 2b≥ab.图解在平均不等式a2 b≥ab中,视a2 b和ab分别为2条线段长,可以解释它们之间的…  相似文献   

20.
正最近,研读文献[1](下称原文),颇受启迪,文中作者从x~2≥0(x∈R)开始,令x=a-b/2(b0)代入出发,"生长"出了一个朴实而不平凡的不等式a~2/b≥a-b/4(b0,当且仅当b=2a时等号成立),并用此不等式(特别关注等号成立的条件)又快又好地解决了一些看似"高不可攀"的国内外名题.精妙之处实在令笔者折服,大开眼界.但"生长"出来  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号