首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我国著名的数学家杨乐教授曾建立下列三角不等式: 设A>0,B>0,A B≤π,0≤λ≤1。则有: cos~2λA cos~2λB-2cosλAcosλBcosλπ≥sin~2λπ (1) 《中学数学》(湖北)及贵刊曾给出多种不同的初等证法,但都较繁,本文用因式分解法给出它的极简单的证明。  相似文献   

2.
对杨乐不等式: 设A>0,B>0,A B≤π,0≤λ≤1,则 cos~2λA cos~2λB-2cosλA·cosλB·cosλπ ≥sin~2λπ (1)《中学数学》(苏州)93年第4期及《中学数学》(湖北)95年第1期分别给出了两种初等证明,本文用配方法给出它的又一初等证明。  相似文献   

3.
一、三角对偶式例1。化简cos~2α cos~2β-2cosαcosβcos(α β). 设原式为A,设B=sin~2α sin~2β 2sinαsinβcos(α β),则A B=2-2cos~2(α β)=2sin(α β),A-B=cos2α cos2β-2cos(α β)·cos(α-β)=0,故A=B=2sin~2(α β). 类似计算cos~2A cos~2B cos~2C 2cosAcosBcosC(A B C=π),Cos~2θ cos~2(θ 120°) cos~2(θ-120°)等.  相似文献   

4.
我国著名的数学家杨乐院士在函数值分布论的研究中曾建立如下的一个三角不等式 :cos2 λA cos2 λB- 2 cosλAcosλBcosλπ≥sin2 λπ (1 )其中 A>0 ,B>0 ,A B≤π,0 <λ<1 .此不等式有许多证法见文 [1 ]~ [3 ],文 [4]~ [6]对不等式 (1 )进行各种探索和推广 .如文 [4]一下子给出 1 5个类似于不等式 (1 )的新三角不等式 ;文 [5 ],[6]对不等式 (1 )给予推广和加强等 .笔者指出 :所有这些三角不等式均可由因式分解法[1 ] 给出统一的、简洁的、本质的证明 .还可以削弱一些条件 ,例如不等式 (1 )转化为证明 :[cosλ(A B) - cosλπ]· [c…  相似文献   

5.
我们先来看一个测验题的解法在△ABC中,求证sin~2A+sin~2B-sin~2C=2·sinAsinB·cosC。证明左边=1/2(1-cos2A)+1/2(1-cos2B)-(1-cos~2C)=cos~2C-1/2(cos2A+cos2B)=cos~2C-cos(A+B)·cos(A-B)=cos~2C+cosC·cos(A-B)=cosC[cosC+cos(A-B)]=cosC2cos1/2(C+A-B)cos1/2(C-A+B)=2cosCcos1/2(180°-2B)cos(1/2)(180°-2A)=2cosCcos(90°-B)cos(90°-A)=2sinAsinBcosC=右边  相似文献   

6.
文[1]给出了如下不等式:在△ABC中,有cosA.cos~2B/2cos~3C/3≤27/64①.经类比探究,笔者得到了一个上述不等式的"姊妹不等式":在△ABC中,有sinAsin~2B/2sin~3C/3≤1/64②,当A=B/2=C/3时等号成立.证明∵sinAsinB/2=-1/2[cos(A+b/2)-cos(A-B/2]  相似文献   

7.
一、高中部分 我们对高中代数上册P.193例4“求sin~210°±cos~240° sin10°cos40°的值”进行演变。 变式1:cos~280° cos~240° cos80°cos40°=3/4。 变式2:cos~2A cos~2B cosA·cosB=3/4的充要条件是A B=2kπ±(2/3)π或A-B=2kπ±(2/3)π,(k∈Z)。 证明:先对原式进行恒等变形: cos~2A cos~2B cosAcosB =1 1/2(cos2A cos2B) cosA·cosB  相似文献   

8.
1987年全国成人高校统一招生数学(文史类)试题的第六题是:证明sin~22x++2cos~2xcos2x=2cos~2x,标准答案为: 左端=(2sinxcosx)~2+2cos~2x(cos~2x--sin~2x)=4sin~2x cos~2x+2cos~4x-2sin~2xcos~2x=2cos~2x(sin~2x+cos~2x)=2cos~2x=右端。 (证法一) 该题证法很多,只要掌握sin2x=2sinxcosx,cos2x=cos~2x-sin~2x=2cos~2x-1=1-2sin~2x及sin~2x+cos~2x=1,则可以从不同角度入手证出,试举几种如下: 证法二  相似文献   

9.
三角法解几何题是较为常见的,三角法解代数题则较为少见。下面略举不同类型代数题的三角解法,其目的在于揭示三角代换法常用时机,常用范围及使用技巧。〈一〉分解因式例1.已知x~2-y~2-z~2=0试将x~3-y~3-z~3分解因式解:由已知得:y~2+z~2=x~2令y=xsinθz=xcosθ则 x~3-y~3-z~3=x~3(1-sin~3θ-cos~3θ) =x~3(sin~2θ-sin~3θ+cos~2θ-cos~3θ) =x~3[sin~2θ(1-sinθ)+cos~2θ(1-cosθ)] =x~3[(1-cos~2θ)(1-sinθ)-(1-sin~2θ)(1-cosθ)] =x~3(1-sinθ)(1-cosθ)(1+cosθ+1+sinθ) =(x-xsinθ)(x-xcosθ)(2x+xcosθ+xsinθ)  相似文献   

10.
一、三角函数取值范围的方程求法我们知道在sin~2a+cos~2α=·1中,运用换元,令cosα=x,sinα=y,就是x~2+y2=1.这样就可把求t=F(cosα,sinα)的范围化为在方程组{x~2+y~2}=1F(x,y)=t},中求t的取值范围.例1已知sinαcosβ=1/2,求t=cosαsi的取值范围.解令cosα=x,sinα=y,cosβ=m,sinβ=n,得方程组(?)消去m,n,y(过程略)得4x~4-(4t~2+3)x~2+4t~2=0(0≤x~2≤1)⑤在⑤中解出t~2求值域或解出x~2求定义域或用二次方程实根的分布方法可得0≤t2≤1/4,所以一1/2≤t≤1/2.例2已知sinα+sinβ=1,求t=cosαt+cosβ的取值  相似文献   

11.
考察下列恒等式: cos2θ=2cos~2θ-1; cos2θ=-(2sin~2θ-1) cos3θ=4 cos~3θ-3cosθ; sin3θ=-(4sin~3θ-3sinθ) cos4θ=8 cos~4θ-8cos~2θ+1; cos4θ=8sin~4θ-8sin~2θ+1 cos5θ=16cos~5θ-20cos~3θ+5cosθ;sin5θ=16sin~5θ-20sin~3θ+5sinθ, ………………………………我们或许会猜测;是否存在某个定理,可以揭示上列展开式之间的微妙关系呢? 回答是肯定的。本文将提出并证明这个定理。定理若已知casnθ=F(cosθ))  相似文献   

12.
1 前言 自从杨乐在[1]中提出不等式 设A>0,B>0,A B≤π,0≤u≤1,则有 cos~2uA cos~2uB-2cosuAcosuBcosuπ≥sin~2uπ (1)后,十余年来,又陆续出现了许多新的证法。最近,文[2]又仿其形,一下给出了15个新的不等式,原是按参数λ(即(1)中的u)的值域分为三组,今依其“形”归为如下四类  相似文献   

13.
错在哪里?     
一、广西东兰中学宋全宁来稿题:设方程x~2-2mx+m+2=0有两个实根,且分别为某直角三角形两锐角正弦的四倍,求m的值。解设直角三角形两锐角分别认α、β,则方程之二根为4sinα和4sinβ=4sin(90°-α)=4cosα,分别代入方程,得 16sin~2α-8msinα+m+2=0和16cosα~2-8mcosα+m+2=0 ∴m=(16sin~2α+2)/(8sinα-1)和m=(16cos~2α+2)/(8cosα-1) 即(16sin~2α+2)/(8sinα-1)=(16cos~2α+2)/(8cosα-1)解得锐角α=45°  相似文献   

14.
本文举例介绍利用一些熟知的涉及三角形三内角的三角恒等式去解决一类三角函数式求值的问题。例1.求cos~220° cos~240°-cos20°cos40°之值。解在恒等式cos~2A cos~2B cos~2C 2cosAcosBcosC=1中,令A=20°,B=40°,C=120°,有cos~220° cos~240° (1/4)-cos20°cos40°=1,于是cos~220° cos~240°-cos20°cos40°=(3/4)。例2.求sin~220° sin~240°=sin20°sin40°之值。  相似文献   

15.
引入变量,将一些原本不是求解方程的问题转化为解方程,从而使原问题获解的方法,称为“方程法”。可应用在一些三角等式的证明中。 [例1] 已知cos~4α/cos~2β+sin~4α/sin~2β=1,求证:cos~8α/cos~6β+sin~8α/sin~6β=1。证:令cos~2α=x,sin~2α=y,则有,用代入消元方法可得到,x~2-2xcos~2β+cos~4β=0,即(x-cos~2β)~2=0, ∴x=cos~2β,y=sin~2β,即cos~2α=cos~2β,sin~2α=sin~2β。  相似文献   

16.
三角中的降幂公式:sin~2α=(1-cos2α)/2,cos~2α=(1 cos2α)/2由倍角公式变形而得,其应用十分广泛.例1.化简cos~2(120° A) cos~2(240° A) cos~2A.解:原式=(1/2)[1 cos(240° 2A)] (1/2)[1 cos(480° 2A)] (1/2)[1 cos2A]=3/2例2.求sin~4 22.5° sin~4 67.5° sin~4 112.5° sin~4 157.5°的值.解:原式=(sin~2 45°/2)~2 (sin~2 135°/2) (sin~2 225°/2)~2 (sin~2 315°/2)~2  相似文献   

17.
题:求证:sin~(10)α cos~(10)α≥1/(16).这是摘自《中学数学》杂志上的一道题,其证法较多,本人给出这个不等式一种简洁证法.证明:sin~(10)α cos~(10)α=((1-cos2α)/2)~5 ((1 cos2α)/2)~5=1/(16)(5cos~42× 10cos~22α 1)  相似文献   

18.
“数学教学通讯”85年第5期张山同志的文“一个公式的巧用”读后很受启发,公式(a b c)(a~2 b~2 c~2-ab-bc-ca)=a~3 b~3 c~3-3abc在解题中巧用之处不少。今就这个公式在三角恒等式的证明中巧用的一角补充几个例题,使该文更有说服力。例1.已知sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin~3α sin~3β sin~3γ=3sinαsinβsinγ (2)cos~3α cos~3β cos~3γ=3cosαcosβcosγ证明:当a b c=0时,a~3 b~3 c~3=3abc令α=siaα,b=sinβ,c=sinγ,则sin~3α sin~3β sin~3γ=3sinαsinβsinγ。令a=cosα,b=cosβ,c=cosγ,则cos~3α cos~3β cos~3γ=3cosαcosβcosγ。利用例1的结论又得一题: 例2.已知:sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin3α sin3β sin3γ  相似文献   

19.
103.α,β,τ为锐角且 cos~2α cos~2β cos~2τ=1,试证:(3)/(4)π<α β τ<π.证由条件可得:cos~2α=sin~2β-cos~2τ>0及 cos~2α=sin~2τ-cos~2β>0.因而又有:sinβ>cosτ及 sinτ>cosβ.于是:sinβ·sinτ>cosτ·cosβ,即 cos(β τ)<0,得:β τ>(π)/(2)·同法可证得:α β>(π)/(2)及τ α>(π)/(2),因而得:α β τ>(3)/(4)π·  相似文献   

20.
1.若遇a≤x~2 y~2≤b(a,b∈R~ ),可作代换x=t·cosφ,y=tsinφ,其中a~(1/2)≤t≤b~(1/2) 例1 已知1≤x~2 y~2≤2,求w=x~2 xy y~2的最值. 解:∵1≤x~2 y~2≤2,∴设x=tcosθ,y=tsinθ,其中1≤t≤2~(1/2),∴w=t~2cos~2θ t~2cosθsinθ t~2sin~2θ=t~2·(1 (1/2)sin2θ),而(1/2)≤1 sin2θ≤(3/2),∴(1/2)≤w≤3. 2.若遇b~2x~2 a~2y~2=a~2b~2(a,b∈R~ ),可作代换x=acosθ,y=bsinθ(此处要注意解析几何中椭圆、双曲线的参数方程的应用) 例2 已知x、y满足x~2 4y~2=4,求w=x~2 2xy 4y~2 x 2y的最值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号