首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
误区1 换元法求函数解析式时忽略新变量范围的讨论 例1已知f(√x+1)=x+2√x,求函数f(x)的解析式. 错解:令t=√x+1,则√x=t-1,x=(t-1)2. 所以f(t)=(t-1)2+2(t-1)=t2-1, f(x)=x2-1. 辨析:因为f(√x+1)=x+2√x隐含着定义域是x≥0,所以由t=√x+1得t≥1,f(t)=t2-1的定义域为t≥1,解析式应为f(x)=x2-1(x≥1). 警示:换元法求出的为外层函数的解析式,它由对应法则和内层函数的值域构成,为此引入新变量要对内层函数求值域,这个值域就是所求函数(外层函数)的定义域.  相似文献   

2.
函数是高中数学的核心内容,是最重要的概念之一.解析式是表达函数的最常用方法.求函数解析式方法众多,现对一些常用的方法进行总结. 一、待定系数法 已知函数类型(如一次函数、二次函数、指数函数、对数函数等)求解析式,首先设出函数解析式,然后根据已知条件通过代入求系数. 例1 已知f(x)=3x-1,f(h(x))=g(x)=2x+3,h(x)为关于x的一次函数,求h(x). 解析:设h(x)=ax+b(a≠0). 由f(x) =3x-1和f(h(x))=g(x)=2x+3,得3h(x)-1=2x+3,即3(ax+b)-1=2x+3(=)3ax+ 3b-1=2x+3,则3a=2且3b-1=3,解得a=2/3且b=4/3,故h(x)=2/3x+4/3(x∈R).  相似文献   

3.
※求值问题※例1:已知函数f(x)=x2(x>0),1(x=0)0(x<0)".,求f{f[f(-3)]}的值.分析:明确自变量在函数的哪一个段上,是解此类题的关键.解:∵-3<0,∴f(-3)=0,∴f[f(-3)]=1,∴f{f[f(-3)]}=f(1)=12=1.※求解析式问题※例2:已知f(x)=x,g(x)=-x+1,!(x)=-12x+2.设f(x),g(x),!(x)的最大值为F(x),求F(x)的解析式.分析:本题的关键是画出图象,求出交点,从而正确地分段,再在各段上写出符合要求的解析式,最后写出分段函数的解析式.解:如图,画出f(x),g(x),!(x)的图象,下面再求交点坐标.!由y=-x+1,y=-21x+2".得yx==3-2,".由y=x,y=-12x+2".得y=34%%%%$%%%…  相似文献   

4.
1待定系数法例1若f(x)=x2-mx+n,f(n)=m,f(1)=2,求f(x).解依题意:2,12,n mn n mm n-----++==解得m=-2,n=-1,∴()f x=x2+2x-1.注如果已知函数式的构造模式,通常根据题设用此法求出函数式的待定系数.2换元法例2已知f(x+1)=x+1,求f(x).解令x+1=t,则x=(t-1)2(t≥1),∵f(t)=(t-1)2+1(t≥1),即f(x)=t2-2t+2(x≥1).注如果已知复合函数f(g(x))的表达式,求f(x)的解析式;先令g(x)=t,得f(x),但值得注意的是在进行变量替换时,应求出新变量的取值范围,否则容易出现错误.3代入法例3设()1f x=1-x,求f(f(f(x)))的解析式.解∵(())11f f x=1-f(x)=1-1/(1-x)1x x…  相似文献   

5.
这是一堂关于函数表达式的习题课,教学对象是高一学生.问题:已知f(2x+1)=x2-2x,求f(x)与f(2x-1)的解析式.学生解法:设f(x)=ax2+bx+c(a≠0),则f(2x+1)=4ax2+(4a+2b)x+a+b+c=x2-2x.易得4a=1,4a+2b=-2,a+b+c=0,解得a=14,b=-32,c=54,所以f(x)=14x2-32x+54,f(2x-1)=x2-4x+3.师:为什么可以"设f(x)=ax2+bx+c(a≠0)"?生1:因为可以推测f(x)一定是二次函数.如果f(x)不是二次函数,则f(2x+1)的解析式也不会是二  相似文献   

6.
一、选择题1.设在[0,1]上函数f(x)的图像是连续的,且f′(x)>0,则下列关系一定成立的是().A.f(0)>0B.f(1)>0C.f(1)>f(0)D.f(1)相似文献   

7.
错在哪里   总被引:1,自引:0,他引:1  
题 已知函数f(x)=x/ax+b(a≠0)满足f(2)=1,且关于x的方程f(x)=x的解集为单元素集,求函数f(x)的解析式.  相似文献   

8.
我们将没有明确给出解析式的函数称为抽象函数,本文就如何确定抽象函数的周期性通过实例介绍一些技巧,供学习参考。 1 合理赋值 在确定抽象函数的周期时,如果题设条件中含有f(a)=b(a、b为常数)等类似条件时,合理赋以特殊值,常可使问题迎刃而解。 例1: 设函数f(x)是定义在R上的奇函数,且f(1)=0,并对任何x∈R均有f(x+2)-f(x)=f(2),则f(x)是以2为周期的周期函数。 分析:因为f(x)是R上的奇函数,所以对一切x∈R都有:f(-x)=-f(x) 又f(x+2)-f(x)=f(2)。 令x=-1,得f(1)-f(-1)=f(2), 即f(1)+f(1)=f(2), 从而f(2)=2f(1)=0 所以f(x+2)=f(x)+f(2)=f(…  相似文献   

9.
<正>函数解析式求解问题是考试中的重点问题,我们在练习过程中要有意识地进行反思和归纳总结。1.已知函数类型,求函数解析式时,可用待定系数法,比如,函数是二次函数,可设为f(x)=ax2+bx+c(a≠0),其中a,b,c为待定系数,根据条件列出方程组,解出a,b,c即可。例1已知f(x)是一次函数,且f[f(x)]=4x-1,求f(x)的解析式。解:设f(x)=kx+b(k≠0)。又因为f[f(x)]=4x-1=f(kx+b)=k(kx+b)  相似文献   

10.
一、拼凑法形如f[h(x)]=g(x)的结构,通过对g(x)进行观察、分析、变形,转化为关于h(x)的多项式,用x替换h(x)即得函数的解析式.例1已知函数f(x)满足:f(x-x1)=x2+x12,求f(x).解∵f(x-x1)=x2+x12=(x-1x)2+2,∴设x-x1=t,则有f(t)=t2+2.∴f(x)=x2+2.二、换元法形如f[h(x)]=g(x)的结构,可设h(x)=t,解出x,代入g(x)进行换元来解,以达到求f(x)的目的.例2已知f(11+-xx)=x(x≠-1),求f(x).解设1-x1+x=t,则x=11+-tt.∵f(t)=11+-tt,∴f(x)=11-+xx(x≠-1).三、待定系数法在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写成一般形式,其中系数待定…  相似文献   

11.
把两个变量的函数关系,用一个等式来表示,这个等式叫函数的解析式,简称解析式.函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.本文笔者对求解函数解析式常用的八种方法逐一进行介绍.一、配凑法已知f[g(x)]=h(x),求f(x)的解析式,常用配凑法.该方法主要通过观察、配方、凑项等使原函数变形为关于“自变量”的表达式,然后以x代替“自变量”得出所求函数的解析式.例1已知f(1 1x)=x12-1,求f(x)的解析式.解析把解析式按“自变量”1 1x变形得f(1 1x)=(1 1x)2-2(1 1x),在上式中以x代替(1 1x),得f(x)=x2-2x(x≠1).这里需要特别注意的是,不要遗漏解析式的定义域x≠1.二、待定系数法已知函数类型或图像以及相关条件,求函数解析式时,常用待定系数法.此方法适用于所求函数的解析式表达式是多项式的情形,首先确定多项式的次数,写出它的一般表达式,然后由已知条件以及多项式相等的条件确定待定的系数.例2已知二次函数f(x)满足条件f(0)=1及f(x 1)-f(x)=2x,求f(x).解析设f(x)=ax2 b...  相似文献   

12.
1.设函数f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=2a-3/a+1,求a的取值范围.2.记函数f(x)的定义域为D,若存在x0∈D使得f(x0)=x0成立,则称点(x0,x0)是函数图象上的"稳定点"若函数f(x)=3x-1/x+a的图象上有且仅有两个相异的稳定点,求实数a的取值范围.3.设函数f(x)=ax2+bx+1(a,b∈R),若f(-1)+0,且对任意实数x均有f(x)≥成立,又当x∈[-2,2]时,g(x)=xf(x)-kx单调递增,求实数k的取值范围.  相似文献   

13.
一、忽视复合函数中变量的范围致错例1已知函数f(x2-1)=lg(xx2-22),试判断f(x)的奇偶性.错解令t=x2-1,则x2=t+1.∴f(t)=lgtt-+11,即f(x)=lgxx-+11.∵f(-x)=lg--xx+-11=-lgxx-+11=-f(x),∴f(x)为奇函数.解析函数奇偶性是建立在定义域关于原点对称的前提条件下的,因此应首先求出原函数的定义域.若定义域不关于原点对称,则原函数为非奇非偶函数;若定义域关于原点对称,则再用奇偶性的定义判断.此题由xx2-22>0,即x2>2,∴t=x2-1>1,故得函数f(x)的定义域为{x|x>1},关于原点不对称,所以f(x)为非奇非偶函数.二、忽视函数的定义域致错例2判断函数y=…  相似文献   

14.
题库(十八)     
1.已知函数f(x)=ax-b/x-2ln x,f(l)=0. (1)若函数f(x)在其定义域为单调函数,求a的取值范围; (2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1= f'(1/an-n+1)-n2+1,已知a1=4,求证:an≥2n+2; (3)在(2)的条件下,试比较1/1+a1+1/1+a2+1/1+a3+…+1/1+an与1/5的大小, 并说明你的理由. 2.设f1(x)=2/1+x,定义fn+1(x)=f1[fn(x)],an=fn(0)-1/fn(0)+2,基中n∈N.  相似文献   

15.
画函数的图象、求函数的极值、判断函数的奇偶性、确定函数的单调区间等,一般都要以解析式y=f(x)为基础。因之,求出f(x)是必要的。下面介绍几种求法。一待定系数法例1.已知:f(x)为有理整函数且 f(2x)+f(3x+1)=13x~2+6x-1 求:f(x) 解:设f(x)=ax~2+bx+c 则f(2x)+f(3x+1) =13ax~2+(6a+5b)x+a+b+2c ∵ 13ax~2+(6a+5b)x+(a+b+2c) =13x~2+6x-1比较系数得则f(x)=x~2-1。二换元法例2若:f[f(x)]=(x+1)/(x+2)求:f(x)  相似文献   

16.
王魁兴 《中学数学月刊》2006,(4):46-46,47-49
一、选择题1.定义在R上的函数f(x)满足:f(-x)=-f(x+4),当x>2时,f(x)单调递增,当(x1-2)(x2-2)<0且x1+x2<4时,f(x1)+f(x2)的值().(A)恒小于0(B)恒大于0(C)可能为0(D)不确定2.定义在R上的函数f(x)满足:f(x+1)=12+f(x)-[f(x)]2,且f(-1)=12,则f(2 006)的值为().(A)-1(B)1(C)12(D)2 0063.函数f(x)=x2+ax+5,且f(x)=f(-4-x)对于x∈R恒成立,当x∈[m,0]时,f(x)最大=5,f(x)最小=1,则实数m的取值范围是().(A)(-∞,-2](B)[-4,0](C)[-4,-2](D)[-2,0]4.奇函数f(x)在[-1,1]上单调递增,且f(-1)=-1,函数f(x)≤t2-2at+1对于x∈[-1,1]恒成立,则当a∈[-1,1]…  相似文献   

17.
导数是高中数学新教材的内容,它作为解题有力的工具使某些问题的求解变得简便.本文选取2004年全国的高考试题,举例介绍应用导数解答高考题的常见类型,供大家参考.  一、求曲线的切线例1  曲线 y=x3 -3x2 +1 在点(1,-1)处的切线方程为(  ).A.y=3x-4    B.y=-3x+2C.y=-4x+3 D.y=4x-5解析  由函数 f(x)=x3 -3x2 +1 导数为f′(x)=3x2-6x,f′(1)=-3,因此得(1,-1)处的切线方程为:y-(-1)=-3(x-1),即y=-3x+2.二、研究函数的单调性例2  已知a∈R,求函数 f(x)=x2eax 的单调区间.解析  函数 f(x)的导数 f′(x)= 2xeax +ax2e…  相似文献   

18.
一、直接法例1已知f(x)=x2(x≥0)x(x<0),g(x)=x(x≥0)-x2(x<0),则x<0时,f[g(x)]为()(A)-x(B)-x2(C)x(D)x2解:当x<0时,g(x)=-x2<0,所以f[g(x)]=g(x)=-x2,选(B).求复合函数的解析式,先求内层函数,再求外层函数,另外,分段函数要注意变量的范围.二、换元法例2已知f(1-cosx)=sin2x,求f(x).解:令1-cosx=t则cosx=1-t,-1≤1-t≤1,所以0≤t≤2.所以f(t)=1-(1-t)2=-t2+2t(0≤t≤2)所以f(x)=-x2+2x(0≤x≤2)三、配方法例3f(x-1x)=x2+x12.求f(x).解:f(x-1x)=x2+x12=(x-1x)2+2,所以f(x)=x2+2.四、待定系数法例4已知f(x)=3x-1,f[h(x)]=g(x)=2x+3,h(x)为x…  相似文献   

19.
Ⅰ.正比例函数f(x)=kx(k≠0,x∈R)的抽象函数的特征式为:(1)f(x+y)=f(x)+f(y);(2)f(x-y)=f(x)-f(y);(3)f(xy)=k1f(x)f(y),特别地当k=1时,有f(xy)=f(x)f(y).例1:定义在R上的函数f(x),恒有f(x+y)=f(x)+f(y),若f(16)=4,那么f(2003)=.解法1(基本解法):令x=y=0,得f(0)=2f(0),∴f(0)=0.令y=-x,得f(x-x)=f(x)+f(-x),即f(-x)=-f(x),∴f(x)是奇函数.令y=x,得f(2x)=2f(x),f(22x)=f(2·2x)=2f(2x)=22f(x),…,f(2nx)=2nf(x).又∵f(16)=4,∴f(1)=41.∵f(2003)=f(211-25-23-22-1),∴f(2003)=f(211)-f(25)-f(23)-f(22)-f(1)=(211-25-23-22-1)·f(1)=20403.…  相似文献   

20.
<正>奇偶性是函数的重要性质,利用它能解决很多化简、求值问题.这里,笔者通过几个例题来谈谈奇函数性质的各种应用.一、利用奇函数的性质求函数值例1若函数f(x)=ax3-bx+lnx+1/x-1+2,且,f(3)=7,求f(-3)的值.解易知,f(x)-2:ax3-bx+lnx+1/x-1+2,且,f(3)=7,求f(-3)的值.解易知,f(x)-2:ax3-bx+lnx+1/x-1为奇函数.令g(x)=f(x)-2,则g(3)=f(3)-2=5.由于g(x)为奇函数,故g(-3)=f(-3)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号