首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
对于第2类函数,因为在lny=lnf(x)中,x的允许值范围仅是y=f(x)的定义域D的一个很小子集合N,对数求导法的求导过程实际上仅在这个N上进行,因而所得到的结果y′=f′(x)仅在N上成立.对于f′(x)的定义域M上其他的点x(即x∈M-N),没有充分根据可以保证f′(x)确实是f(x)的导数.  相似文献   

2.
对一个可导函数进行求导的方法多种多样,但当函数的解析式形如y=f1(x)f2(x)……fm(x)时,一般教材都是采用了两侧取对数的方法,比如求函数y=的一阶导数,就是如此.解:取所求函数的对数得:  相似文献   

3.
一般而言,多元函数的高阶混合偏导数的求导顺序是不可交换的。那末,在什么条件下高阶混合偏导数与求导顺序无关,在数学分析的教材中,都是在假设相应阶数的混合偏导数连续这个条件下,来讨论混合偏导数与求导顺序无关问题。一般都有如下定理。定理1 若f_(xy)(x,y)和f_(yx)(x,y)都在点(x_0,y_0)连续,则  相似文献   

4.
现行数学分析书对混合偏导数与求导次序的无关性,只在较强条件下证明了二元函数在一点的二阶混合偏导数与求导次序的无关性,然后将所得结论推广到一般多元函数的高阶混合偏导数,显得难以自圆其说。本文不仅在较弱条件下证明了二元函数在一点的二阶混合偏导数与求导次序的无关性,而且较完整地给出了高阶混合偏导数与求导次序的无关性。  相似文献   

5.
陈守礼 《教学月刊》2004,(11):54-55
一、对数求导法新编教材高中第三册 (选修 )中有对数函数的导数公式 :(lnx)′= 1x,(logax)′= 1xlogae,当函数 f(x)蕴含的运算关系复杂时 ,可用对数求导法求 f′(x).例1 f(x)= 3 (x+2)2(3x-2),求f′(x).解 :lnf(x)= 23ln(x+2) +13ln(3x-2) 1f(x)·f′(x)= 23· 1x+2+13· 33x-2= 9x+23(x+2)(3x-2) f′(x)= 3(x+2)2(3x-2)·9x+23(x+2)(3x-2)= 9x+23· 3 (x+2)(3x-2)2解法中的疑惑是 :两边取对数后 ,定义域发生了改变.如何理解 ?为了释疑 ,先解决函数y=loga|x|的求导问题.例2函数 y=loga|x| ,求 y′.解 :由例2,对数函数的导数公式可扩展为…  相似文献   

6.
多元函数极限的一种求法   总被引:4,自引:0,他引:4  
把多元函数极限的判断及求法转化为一元函数极限的判断及求法。将点(x0,y0,z0)的某去心邻域内的点(x,y,z)用向量(x-x0,y-y0,z-z0)的方向余弦及变量t表示为(x0 tcosα,y0 tcosβ,z0 tcosγ),使多元函数f(x,y,z)转化为含自变量t的一元函数f(x0 tcosα,y0 tcosβ,z0 tcosγ),且给出了定理及相应的推论,并给予证明。得出若t→0时,(x0 tcosα,y0 tcosβ,z0 tcosγ)→A是与α,β,γ取值无关的常数,则f(x,y,z)→A((x,y,z)→(x0,y0,z0));若A与α,β,γ取值有关,则(x,y,z)→(x0,y0,z0)时f(x,y,z)的极限不存在。  相似文献   

7.
司恺 《教育革新》2007,(2):48-48
问题f(x,y,m,k,……)中含有若干相互关联的量,若这个问题的整个过程与其中某些量x,y或m,k的变化无关,我们称这个问题是与x,y,或m,k无关的问题。这里x,y是主变量,m,k,……是参变量,无关问题涉及到代数、三角、几何的各个领域,归纳起来,有两类:一是与主变量无关,二是与参变量无关。  相似文献   

8.
对数求导法   总被引:1,自引:0,他引:1  
对数求导法:先对函数两边取对数,然后再求导数y'的方法。因这种方法比公式法简便,所以它被广泛应用于幂指函数y=[Φ(x)]ψ(x)(Φ(x)>0)和含多个因式幂的连乘函数的求导问题中。但有些学生在使用对数求导法时常常抱着怀疑的态度,即:1.函数y=f(x)的可导点,取对数以后函数  相似文献   

9.
复合函数求导法是求导的重中之重,这个问题解决的好坏直接影响到换元积分法.定理.若函数y=f(u)在u可导,函数u=g(x)在x可导,则复合函数y=f[g(x)]在x也可导,且y'_x=y'_(u)·u'_x'或dy/dx=dy/du·du/dx.证明 已知函数y=f(u)在u可导,即(?)△y/△u(△u≠0)或△y/△u=f'(u)+a 其中(?)a=0,从而当△u≠0,有△y=f'(u)△u+a△u.(1)当△u=0 时,显然△y=f(u+△u)—f(u)=0,(1)式也成立.为此令n证明 已知函数y=f(u)在u可导,即(?)△y/△u=f′(u)(△u≠0)△y/△u=f'(u)+a 其中(?)a=,从而当△u≠0,有△y=f'(u)△(u)△u+a△u.(l)当△u=0 时,显然面△y=f(u+△u)—f(u)=0,(1)式也成立.为此令  相似文献   

10.
1.两个重要结论结论1直线l:f(x,y)=0将平面分成两个区域,则有"同正异负",即(1)A(x1,y1),B(x2,y2)在l的同侧(?)f(x1,y1)·f(x2,y2)>0.(2)A(x1,y1),B(x2,y2)在l的异侧(?)f(x1,y1)·f(x2,y2)<0.(3)A(x1,y1)或B(x2,y2)在l上(?)f(x1,y1)·f(xz,y2)=0.结论2若点P(x,y)与定点A(x0,y0)在直线l的同侧(?)f(x,y)·f(x0,y0)>0.2.应用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号