首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study evaluated the multiple imputation method, a procedure that is similar to the one suggested by Li and Lissitz (2004), and compared the performance of this method with that of the bootstrap method and the delta method in obtaining the standard errors for the estimates of the parameter scale transformation coefficients in item response theory (IRT) equating in the context of the common‐item nonequivalent groups design. Two different estimation procedures for the variance‐covariance matrix of the IRT item parameter estimates, which were used in both the delta method and the multiple imputation method, were considered: empirical cross‐product (XPD) and supplemented expectation maximization (SEM). The results of the analyses with simulated and real data indicate that the multiple imputation method generally produced very similar results to the bootstrap method and the delta method in most of the conditions. The differences between the estimated standard errors obtained by the methods using the XPD matrices and the SEM matrices were very small when the sample size was reasonably large. When the sample size was small, the methods using the XPD matrices appeared to yield slight upward bias for the standard errors of the IRT parameter scale transformation coefficients.  相似文献   

2.
In test development, item response theory (IRT) is a method to determine the amount of information that each item (i.e., item information function) and combination of items (i.e., test information function) provide in the estimation of an examinee's ability. Studies investigating the effects of item parameter estimation errors over a range of ability have demonstrated an overestimation of information when the most discriminating items are selected (i.e., item selection based on maximum information). In the present study, the authors examined the influence of item parameter estimation errors across 3 item selection methods—maximum no target, maximum target, and theta maximum—using the 2- and 3-parameter logistic IRT models. Tests created with the maximum no target and maximum target item selection procedures consistently overestimated the test information function. Conversely, tests created using the theta maximum item selection procedure yielded more consistent estimates of the test information function and, at times, underestimated the test information function. Implications for test development are discussed.  相似文献   

3.
《教育实用测度》2013,26(2):125-141
Item parameter instability can threaten the validity of inferences about changes in student achievement when using Item Response Theory- (IRT) based test scores obtained on different occasions. This article illustrates a model-testing approach for evaluating the stability of IRT item parameter estimates in a pretest-posttest design. Stability of item parameter estimates was assessed for a random sample of pretest and posttest responses to a 19-item math test. Using MULTILOG (Thissen, 1986), IRT models were estimated in which item parameter estimates were constrained to be equal across samples (reflecting stability) and item parameter estimates were free to vary across samples (reflecting instability). These competing models were then compared statistically in order to test the invariance assumption. The results indicated a moderately high degree of stability in the item parameter estimates for a group of children assessed on two different occasions.  相似文献   

4.
This article describes an ongoing project to develop a formative, inferential reading comprehension assessment of causal story comprehension. It has three features to enhance classroom use: equated scale scores for progress monitoring within and across grades, a scale score to distinguish among low‐scoring students based on patterns of mistakes, and a reading efficiency index. Instead of two response types for each multiple‐choice item, correct and incorrect, each item has three response types: correct and two incorrect response types. Prior results on reliability, convergent and discriminant validity, and predictive utility of mistake subscores are briefly described. The three‐response‐type structure of items required rethinking the item response theory (IRT) modeling. IRT‐modeling results are presented, and implications for formative assessments and instructional use are discussed.  相似文献   

5.
This study investigates the effect of several design and administration choices on item exposure and person/item parameter recovery under a multistage test (MST) design. In a simulation study, we examine whether number‐correct (NC) or item response theory (IRT) methods are differentially effective at routing students to the correct next stage(s) and whether routing choices (optimal versus suboptimal routing) have an impact on achievement precision. Additionally, we examine the impact of testlet length on both person and item recovery. Overall, our results suggest that no single approach works best across the studied conditions. With respect to the mean person parameter recovery, IRT scoring (via either Fisher information or preliminary EAP estimates) outperformed classical NC methods, although differences in bias and root mean squared error were generally small. Item exposure rates were found to be more evenly distributed when suboptimal routing methods were used, and item recovery (both difficulty and discrimination) was most precisely observed for items with moderate difficulties. Based on the results of the simulation study, we draw conclusions and discuss implications for practice in the context of international large‐scale assessments that recently introduced adaptive assessment in the form of MST. Future research directions are also discussed.  相似文献   

6.
Mokken scale analysis (MSA) is a probabilistic‐nonparametric approach to item response theory (IRT) that can be used to evaluate fundamental measurement properties with less strict assumptions than parametric IRT models. This instructional module provides an introduction to MSA as a probabilistic‐nonparametric framework in which to explore measurement quality, with an emphasis on its application in the context of educational assessment. The module describes both dichotomous and polytomous formulations of the MSA model. Examples of the application of MSA to educational assessment are provided using data from a multiple‐choice physical science assessment and a rater‐mediated writing assessment.  相似文献   

7.
In structural equation modeling software, either limited-information (bivariate proportions) or full-information item parameter estimation routines could be used for the 2-parameter item response theory (IRT) model. Limited-information methods assume the continuous variable underlying an item response is normally distributed. For skewed and platykurtic latent variable distributions, 3 methods were compared in Mplus: limited information, full information integrating over a normal distribution, and full information integrating over the known underlying distribution. Interfactor correlation estimates were similar for all 3 estimation methods. For the platykurtic distribution, estimation method made little difference for the item parameter estimates. When the latent variable was negatively skewed, for the most discriminating easy or difficult items, limited-information estimates of both parameters were considerably biased. Full-information estimates obtained by marginalizing over a normal distribution were somewhat biased. Full-information estimates obtained by integrating over the true latent distribution were essentially unbiased. For the a parameters, standard errors were larger for the limited-information estimates when the bias was positive but smaller when the bias was negative. For the d parameters, standard errors were larger for the limited-information estimates of the easiest, most discriminating items. Otherwise, they were generally similar for the limited- and full-information estimates. Sample size did not substantially impact the differences between the estimation methods; limited information did not gain an advantage for smaller samples.  相似文献   

8.
As low-stakes testing contexts increase, low test-taking effort may serve as a serious validity threat. One common solution to this problem is to identify noneffortful responses and treat them as missing during parameter estimation via the effort-moderated item response theory (EM-IRT) model. Although this model has been shown to outperform traditional IRT models (e.g., two-parameter logistic [2PL]) in parameter estimation under simulated conditions, prior research has failed to examine its performance under violations to the model’s assumptions. Therefore, the objective of this simulation study was to examine item and mean ability parameter recovery when violating the assumptions that noneffortful responding occurs randomly (Assumption 1) and is unrelated to the underlying ability of examinees (Assumption 2). Results demonstrated that, across conditions, the EM-IRT model provided robust item parameter estimates to violations of Assumption 1. However, bias values greater than 0.20 SDs were observed for the EM-IRT model when violating Assumption 2; nonetheless, these values were still lower than the 2PL model. In terms of mean ability estimates, model results indicated equal performance between the EM-IRT and 2PL models across conditions. Across both models, mean ability estimates were found to be biased by more than 0.25 SDs when violating Assumption 2. However, our accompanying empirical study suggested that this biasing occurred under extreme conditions that may not be present in some operational settings. Overall, these results suggest that the EM-IRT model provides superior item and equal mean ability parameter estimates in the presence of model violations under realistic conditions when compared with the 2PL model.  相似文献   

9.
This article considers potential problems that can arise in estimating a unidimensional item response theory (IRT) model when some test items are multidimensional (i.e., show a complex factorial structure). More specifically, this study examines (1) the consequences of model misfit on IRT item parameter estimates due to unintended minor item‐level multidimensionality, and (2) whether a Projection IRT model can provide a useful remedy. A real‐data example is used to illustrate the problem and also is used as a base model for a simulation study. The results suggest that ignoring item‐level multidimensionality might lead to inflated item discrimination parameter estimates when the proportion of multidimensional test items to unidimensional test items is as low as 1:5. The Projection IRT model appears to be a useful tool for updating unidimensional item parameter estimates of multidimensional test items for a purified unidimensional interpretation.  相似文献   

10.
The U.S. government has become increasingly focused on school climate, as recently evidenced by its inclusion as an accountability indicator in the Every Student Succeeds Act. Yet, there remains considerable variability in both conceptualizing and measuring school climate. To better inform the research and practice related to school climate and its measurement, we leveraged item response theory (IRT), a commonly used psychometric approach for the design of achievement assessments, to create a parsimonious measure of school climate that operates across varying individual characteristics. Students (n = 69,513) in 111 secondary schools completed a school climate assessment focused on three domains of climate (i.e., safety, engagement, and environment), as defined by the U.S. Department of Education. Item and test characteristics were estimated using the mirt package in R using unidimensional IRT. Analyses revealed measurement difficulties that resulted in a greater ability to assess less favorable perspectives on school climate. Differential item functioning analyses indicated measurement differences based on student academic success. These findings support the development of a broad measure of school climate but also highlight the importance of work to ensure precision in measuring school climate, particularly when considering use as an accountability measure.  相似文献   

11.
Six procedures for combining sets of IRT item parameter estimates obtained from different samples were evaluated using real and simulated response data. In the simulated data analyses, true item and person parameters were used to generate response data for three different-sized samples. Each sample was calibrated separately to obtain three sets of item parameter estimates for each item. The six procedures for combining multiple estimates were each applied, and the results were evaluated by comparing the true and estimated item characteristic curves. For the real data, the two best methods from the simulation data analyses were applied to three different-sized samples and the resulting estimated item characteristic curves were compared to the curves obtained when the three samples were combined and calibrated simultaneously. The results support the use of covariance matrix-weighted averaging and a procedure that involves sample-size-weighted averaging of estimated item characteristic curves at the center of the ability distribution  相似文献   

12.
ABSTRACT

Based on concerns about the item response theory (IRT) linking approach used in the Programme for International Student Assessment (PISA) until 2012 as well as the desire to include new, more complex, interactive items with the introduction of computer-based assessments, alternative IRT linking methods were implemented in the 2015 PISA round. The new linking method represents a concurrent calibration using all available data, enabling us to find item parameters that maximize fit across all groups and allowing us to investigate measurement invariance across groups. Apart from the Rasch model that historically has been used in PISA operational analyses, we compared our method against more general IRT models that can incorporate item-by-country interactions. The results suggest that our proposed method holds promise not only to provide a strong linkage across countries and cycles but also to serve as a tool for investigating measurement invariance.  相似文献   

13.
The applications of item response theory (IRT) models assume local item independence and that examinees are independent of each other. When a representative sample for psychometric analysis is selected using a cluster sampling method in a testlet‐based assessment, both local item dependence and local person dependence are likely to be induced. This study proposed a four‐level IRT model to simultaneously account for dual local dependence due to item clustering and person clustering. Model parameter estimation was explored using the Markov Chain Monte Carlo method. Model parameter recovery was evaluated in a simulation study in comparison with three other related models: the Rasch model, the Rasch testlet model, and the three‐level Rasch model for person clustering. In general, the proposed model recovered the item difficulty and person ability parameters with the least total error. The bias in both item and person parameter estimation was not affected but the standard error (SE) was affected. In some simulation conditions, the difference in classification accuracy between models could go up to 11%. The illustration using the real data generally supported model performance observed in the simulation study.  相似文献   

14.
Trend estimation in international comparative large‐scale assessments relies on measurement invariance between countries. However, cross‐national differential item functioning (DIF) has been repeatedly documented. We ran a simulation study using national item parameters, which required trends to be computed separately for each country, to compare trend estimation performances to two linking methods employing international item parameters across several conditions. The trend estimates based on the national item parameters were more accurate than the trend estimates based on the international item parameters when cross‐national DIF was present. Moreover, the use of fixed common item parameter calibrations led to biased trend estimates. The detection and elimination of DIF can reduce this bias but is also likely to increase the total error.  相似文献   

15.
Changes to the design and development of our educational assessments are resulting in the unprecedented demand for a large and continuous supply of content‐specific test items. One way to address this growing demand is with automatic item generation (AIG). AIG is the process of using item models to generate test items with the aid of computer technology. The purpose of this module is to describe and illustrate a template‐based method for generating test items. We outline a three‐step approach where test development specialists first create an item model. An item model is like a mould or rendering that highlights the features in an assessment task that must be manipulated to produce new items. Next, the content used for item generation is identified and structured. Finally, features in the item model are systematically manipulated with computer‐based algorithms to generate new items. Using this template‐based approach, hundreds or even thousands of new items can be generated with a single item model.  相似文献   

16.
Missing data are a common problem in a variety of measurement settings, including responses to items on both cognitive and affective assessments. Researchers have shown that such missing data may create problems in the estimation of item difficulty parameters in the Item Response Theory (IRT) context, particularly if they are ignored. At the same time, a number of data imputation methods have been developed outside of the IRT framework and been shown to be effective tools for dealing with missing data. The current study takes several of these methods that have been found to be useful in other contexts and investigates their performance with IRT data that contain missing values. Through a simulation study, it is shown that these methods exhibit varying degrees of effectiveness in terms of imputing data that in turn produce accurate sample estimates of item difficulty and discrimination parameters.  相似文献   

17.
IRT Equating Methods   总被引:1,自引:0,他引:1  
The purpose of this instructional module is to provide the basis for understanding the process of score equating through the use of item response theory (IRT). A context is provided for addressing the merits of IRT equating methods. The mechanics of IRT equating and the need to place parameter estimates from separate calibration runs on the same scale are discussed. Some procedures for placing parameter estimates on a common scale are presented. In addition, IRT true-score equating is discussed in some detail. A discussion of the practical advantages derived from IRT equating is offered at the end of the module.  相似文献   

18.
The nature of anatomy education has changed substantially in recent decades, though the traditional multiple‐choice written examination remains the cornerstone of assessing students' knowledge. This study sought to measure the quality of a clinical anatomy multiple‐choice final examination using item response theory (IRT) models. One hundred seventy‐six students took a multiple‐choice clinical anatomy examination. One‐ and two‐parameter IRT models (difficulty and discrimination parameters) were used to assess item quality. The two‐parameter IRT model demonstrated a wide range in item difficulty, with a median of ?1.0 and range from ?2.0 to 0.0 (25th to 75th percentile). Similar results were seen for discrimination (median 0.6; range 0.4–0.8). The test information curve achieved maximum discrimination for an ability level one standard deviation below the average. There were 15 items with standardized loading less than 0.3, which was due to several factors: two items had two correct responses, one was not well constructed, two were too easy, and the others revealed a lack of detailed knowledge by students. The test used in this study was more effective in discriminating students of lower ability than those of higher ability. Overall, the quality of the examination in clinical anatomy was confirmed by the IRT models. Anat Sci Educ 3:17–24, 2010. © 2009 American Association of Anatomists.  相似文献   

19.
In this digital ITEMS module, Dr. Brian Leventhal and Dr. Allison Ames provide an overview of Monte Carlo simulation studies (MCSS) in item response theory (IRT). MCSS are utilized for a variety of reasons, one of the most compelling being that they can be used when analytic solutions are impractical or nonexistent because they allow researchers to specify and manipulate an array of parameter values and experimental conditions (e.g., sample size, test length, and test characteristics). Dr. Leventhal and Dr. Ames review the conceptual foundation of MCSS in IRT and walk through the processes of simulating total scores as well as item responses using the two-parameter logistic, graded response, and bifactor models. They provide guidance for how to implement MCSS using other item response models and best practices for efficient syntax and executing an MCSS. The digital module contains sample SAS code, diagnostic quiz questions, activities, curated resources, and a glossary.  相似文献   

20.
Abstract

Noncognitive assessments in Programme for International Student Assessment (PISA) and Trends in International Mathematics and Science Study share certain similarities and provide complementary information, yet their comparability is seldom checked and convergence not sought. We made use of student self-report data of Instrumental Motivation, Enjoyment of Science and Sense of Belonging to School targeted in both surveys in 29 overlapping countries to (1) demonstrate levels of measurement comparability, (2) check convergence of different scaling methods within survey and (3) check convergence of these constructs with student achievement across surveys. We found that the three scales in either survey (except Sense of Belonging to School in PISA) reached at least metric invariance. The scale scores from the multigroup confirmatory factor analysis and the item response theory analysis were highly correlated, pointing to robustness of scaling methods. The correlations between each construct and achievement was generally positive within each culture in each survey, and the correlational pattern was similar across surveys (except for Sense of Belonging), indicating certain convergence in the cross-survey validation. We stress the importance of checking measurement invariance before making comparative inferences, and we discuss implications on the quality and relevance of these constructs in understating learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号