首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Abstract

The aim of the present study was to investigate the patterns of shoulder muscle activation and joint torques during maximal effort eccentric contractions with shoulder extension, abduction, and diagonal movements on the isokinetic device. Participants in this investigation were nine men and four women with no history of shoulder injury or disorders. They all participated in overhead sports at least three days a week, and volunteered to participate in this study for shoulder isokinetic muscle strength testing. They performed eccentric muscle action with shoulder flexion, abduction, and diagonal movements at velocities of 60 rad·s?1 and 180 rad· s?1, which was followed alternately by passive shoulder flexion, abduction and diagonal movement at a velocity of 30 rad· s?1, and total range of motion was standardised to 90°. Electromyography (EMG) and torque values were calculated to every 10°, except for the start and end 5° during each task. During each test, the isokinetic force output and muscle activation were synchronised. EMG data were normalised by percentage of maximum voluntary isometric contraction (%MVIC). EMG signals were recorded by surface EMG from the anterior deltoid (AD), middle deltoid (MD), posterior deltoid (PD), upper trapezius (UT), middle trapezius (MT), and biceps brachii (BB) muscles during this test. All of the muscle patterns were significantly decreased at the last compared with the initial part during eccentric shoulder flexion movement, except for the BB muscle (P < 0.05). AD and BB muscles played a similar role when peak torque was generated under load during eccentric muscle action with varying shoulder movements. PD and UT muscle activities were significantly lower than the other muscle activities during eccentric contraction with shoulder flexion and abduction movements, and the PD and UT muscles played a significant role in conjunction with MD and MT muscles in varying degrees during eccentric contraction with shoulder diagonal movements at 180 rad·s?1 (P < 0.05). Our study demonstrated that MT muscle activity was greatly influenced when torque values showed a peak moment under load during maximum effort, eccentric contraction with shoulder abduction and diagonal movements. However, the MD, PD, UT, and MT muscle activities had no great influence when peak torque was generated under load during eccentric muscle action with shoulder diagonal movement at high velocity. The present study suggested that varying eccentric muscle activity patterns may be needed to investigate proper training and functional contributions of upper extremity muscles to stabilisation of the shoulder joint when peak torque was generated under load.  相似文献   

2.
Abstract

To investigate whether spatial assimilation effects are due to premovement control processes or postinitiation feedback processes, surface EMG recordings were made from two agonists and one antagonist during both single and dual movements involving the upper limb(s). In the single condition, subjects (N=7) made 25 Short (20°) and 25 Long (60°) reversal movements using levers in the sagittal plane, in 195 ms to reversal. In the dual condition, both Short and Long movements were performed simultaneously for 75 trials, the last 25 of which were without knowledge of results. Subjects overshot the Short target in the dual condition, showing spatial assimilation effects. Overshooting was associated with increased peak EMG in the initial (premovement) agonist burst, supporting the notion that spatial assimilation effects are modulated via premovement control processes.  相似文献   

3.
Abstract

The study investigated different electromyographic (EMG) normalisation methods for upper-limb muscles. This assessment aimed at comparing the EMG amplitude and the reliability of EMG values obtained with each method. Eighteen male tennis players completed isometric maximal voluntary contractions and dynamic strength exercises (push-ups and chin-ups) on three separate test sessions over at least 7 days. Surface EMG activity of nine upper body muscles was recorded. For each muscle, an analysis of variance for repeated measures was used to compare maximal EMG amplitudes between test conditions. The intra-class correlation coefficient, the coefficient of variation and the standard error of measurement were calculated to determine the EMG reliability of each condition. On the basis of a compromise between maximal EMG amplitude and high reliability, the chin-ups appeared to be the optimal normalisation method for M. latissimus dorsi, M. posterior deltoid, M. biceps brachii, M. flexor carpi radialis and M. extensor carpi radialis. The push-ups seemed relevant to normalise M. anterior deltoid and M. triceps brachii activity, while isometric maximal voluntary contraction remained the most appropriate method for M. pectoralis major and M. middle deltoid. Thus, original methods are proposed to normalise EMG signal of upper-limb muscles.  相似文献   

4.
Abstract

Cinematographic and electromyographic methods were used to coordinate the collection of kinematic and myoelectric data on 41 male subjects. The novel motor task consisted of propelling a four-wheeled carriage along a level aluminum track to a criterion velocity by a knee extension movement. Mean performance scores demonstrated that a significant amount of learning took place over 21 trials. The finding of learning over practice provided a basis by which changes in the kinematic and myoelectric variables were analyzed. Statistical analysis consisted of a One-Sample Hotelling's T2 Test and Trend Analysis using a Multiple Regression Program. Data were collected on trials 1, 2, 6, 15, and 21. Results revealed that: (1) both knee joint and ankle joint angular velocities at release followed the same trend as performance scores; (2) two myotemporal variables had no significant trends on the four muscles under investigation; and (3) two knee flexors had linear trends and two knee extensors had cubic trends on the variable maximum integrated electromyographic (Iemg) amplitude. It was concluded that: (1) trends of joint angular velocities over practice more closely resembled the performance score trends than did myoelectric activity; (2) when myotemporal changes are not evident over practice, changes in maximum Iemg amplitude of muscles are responsible for increasing performance proficiency; and (3) if performance demands an increase in joint angular velocity, agonistic as well as antagonistic myoelectric activity will increase in muscles which act at the joint.  相似文献   

5.
Abstract

Maximally fast, self-terminated, elbow flexion movements were performed by 10 male and 10 female college-aged subjects to assess potential gender-related differences in kinematics and the triphasic electromyographic (EMG) pattern. The subjects were instructed to move their forearms as fast as possible through 90° of elbow flexion range of motion and stop as sharply as possible at the terminal point. An electromagnet, set to 0, 40, and 70% of each subject's maximal isometric torque, provided resistance to movement initiation and resulted in quick release movements. Surface EMG was collected from the biceps b. and triceps b. muscles. Results indicated that the males had faster movements and accelerations under all conditions. EMG records indicated that the males had faster rates of EMG rise, particularly in the triceps b., and more tightly coupled reciprocal activation. The quick release afforded faster accelerations for both groups, yet only the males moved faster throughout the full range of motion. Following the quick release, the males differed from the females by increasing the triceps b. EMG amplitude. Hence, the males were able to shorten movement time in quick release movements by increasing triceps b. activation and, thus, braking ability. These results suggest that the females were more neurally constrained than the males with respect to rapid EMG activation of the triceps b., resulting in limits in the braking process.  相似文献   

6.
The purpose of this study was to examine whether differences in construction between the compact ski, the racing ski and the soft ski influence the behavioural and electromuscular responses of the user. Eight qualified male ski instructors performed two ‘shuss’ trials and three different basic turns. Six muscles (M. biceps femoris, M. gastrocnemius lateralis and medialis, M. rectus femoris, M. vastus lateralis and M. tibialis anterior) were studied, using a conventional but portable electromyographic (EMG) registration with telemetric synchronization, active electrodes and a six‐channel portable data recorder. Muscle contractions were continuously registered and visualized in raw EMG form and linear envelopes. The differences between the mean rectified EMG data of dynamic contractions while skiing and the mean rectified EMG data of the maximal voluntary contraction were used in the primary analysis of data, from which the participation levels of the muscles investigated could be calculated for each type of ski. Based on this comparison, differences between the effects on muscle activity of the three types of skis were unimportant. In a second phase, the normalized linear envelopes of all subjects were graphically superimposed and averaged. This was performed for each muscle, for each movement, for each leg and for each ski tested. The EMG data were considered in combination with anthropometric values, with snow characteristics and with the velocity of skiing. This study showed systematic differences between the use of the racing, soft and compact ski. On average the soft ski showed the lowest muscle activity patterns and thus the most economical muscular efforts for all muscles investigated and within all movements.  相似文献   

7.
The purpose of this study was to examine whether differences in construction between the compact ski, the racing ski and the soft ski influence the behavioural and electromuscular responses of the user. Eight qualified male ski instructors performed two 'shuss' trials and three different basic turns. Six muscles (M. biceps femoris, M. gastrocnemius lateralis and medialis, M. rectus femoris, M. vastus lateralis and M. tibialis anterior) were studied, using a conventional but portable electromyographic (EMG) registration with telemetric synchronization, active electrodes and a six-channel portable data recorder. Muscle contractions were continuously registered and visualized in raw EMG form and linear envelopes. The differences between the mean rectified EMG data of dynamic contractions while skiing and the mean rectified EMG data of the maximal voluntary contraction were used in the primary analysis of data, from which the participation levels of the muscles investigated could be calculated for each type of ski. Based on this comparison, differences between the effects on muscle activity of the three types of skis were unimportant. In a second phase, the normalized linear envelopes of all subjects were graphically superimposed and averaged. This was performed for each muscle, for each movement, for each leg and for each ski tested. The EMG data were considered in combination with anthropometric values, with snow characteristics and with the velocity of skiing. This study showed systematic differences between the use of the racing, soft and compact ski. On average the soft ski showed the lowest muscle activity patterns and thus the most economical muscular efforts for all muscles investigated and within all movements.  相似文献   

8.
Abstract

Rapid, goal-directed elbow flexion movements were examined under interacting conditions of inertial loading and resistance to movement initiation. The resistance ceased when movement began, resulting in quick release movements. Inertial load slowed the movement and lengthened the agonist and antagonist electromyographic (EMG) burst durations. The quick release resulted in larger accelerations but only minimal changes in peak velocity. Most aspects of the triphasic EMG pattern were little affected by the quick release, but the build up of agonist EMG and the corresponding rate of static force development differed markedly between load and quick release conditions. These and other data suggest that the specific pattern of agonist muscle activation is set according to neuromuscular constraints of the antagonist muscle and the expectation of movement dynamics.  相似文献   

9.

Fast unloaded movements (i.e. striking, throwing and kicking) are typically performed in a proximo‐distal sequence, where initially high proximal segments accelerate while distal segments lag behind, after which proximal segments decelerate while distal segments accelerate. The aims of this study were to examine whether proximal segment deceleration is performed actively by antagonist muscles or is a passive consequence of distal segment movement, and whether distal segment acceleration is enhanced by proximal segment deceleration. Seventeen skilled taekwon‐do practitioners were filmed using a high‐speed camera while performing a high front kick. During kicking, EMG recordings were obtained from five major lower extremity muscles. Based on the kinematic data, inverse dynamics computations were performed yielding muscle moments and motion‐dependent moments. The results indicated that thigh deceleration was caused by motion‐dependent moments arising from lower leg motion and not by active deceleration. This was supported by the EMG recordings. Lower leg acceleration was caused partly by a knee extensor muscle moment and partly by a motion‐dependent moment arising from thigh angular velocity. Thus, lower leg acceleration was not enhanced by thigh deceleration. On the contrary, thigh deceleration, although not desirable, is unavoidable because of lower leg acceleration.  相似文献   

10.
Abstract

Research on the benefits of distributed practice for the acquisition and retention of motor skills has a long history. The majority of this research has involved skill acquisition of continuous tasks. However, there is some evidence to suggest that distribution of practice effects are quite different for discrete tasks than for continuous tasks. In the present study, we used a single task, formed discrete and continuous versions of the task, and examined how acquisition and retention were affected by the length of inter-trial interval. The basic task was a movement timing task that involved either one timing estimate per trial (the “discrete” version) or twenty successive estimates per trial (the “continuous” version). Separate groups of subjects learned one version of the task under either distributed (25 s inter-trial intervals) or massed (0.5 s inter-trial intervals) practice conditions. Both massed and distributed retention trials were performed on the same version of the task according to a double transfer design. The results confirmed the apparent disparity: Acquisition and retention were facilitated by distributed practice on the continuous task, but by massed practice on the discrete task. These results were discussed in terms of the role of the inter-trial interval in discrete and continuous tasks.  相似文献   

11.
The aim of this study was to perform a biomechanical validation of a double poling imitation drill on a rollerboard. Six elite cross‐country skiers performed three imitation drill trials at maximal speed at 13° inclination and in double poling on roller skis on a paved road of 3°. Pole and strap forces, elbow and hip angles and EMG activity of eight upper body muscles were measured. Force curves showed similar characteristics, except for impact force occurring only at pole plant in double poling on roller skis. Double poling on a rollerboard includes an eccentric roll‐down phase not appearing in double polling on roller skis. Forces on the rollerboard were similar to those on roller skis. Courses of the elbow angles indicated similar shapes, except for the angle at the start of the propulsion phase and, consequently, during flexion (p < 0.01). Propulsion time and cycle duration were longer and frequency lower on the rollerboard (all p < 0.001). Muscle activities were not significantly different, except for stronger biceps brachii (p < 0.01) and weaker erector spinae activation (p < 0.05) on the rollerboard. Muscle coordination patterns showed similar onset and offset points of each muscle and comparable activations in both activities, except for biceps brachii. Two movement strategies on the rollerboard were found, which led to small differences in measured variables. The biomechanical validity of double poling on a rollerboard can be judged as moderately high, being aware of the differences in some variables that might be considered in training sessions on the rollerboard, particularly when using intervals with high number of repetitions.  相似文献   

12.
Abstract

Lateral movements like cutting are essential in many team sport disciplines. The aim of the present study was to analyse adaptations in motor control in response to task unpredictability during lateral movement execution. Twelve subjects performed lateral jumps with different landing modalities (stable, sliding or counteracting) that were either known (predictable setting) or unknown (unpredictable setting) prior to movement execution. Results revealed that regardless of the landing modality, hip joint abduction was significantly greater in the unpredictable compared to predictable setting. Furthermore, during the sliding landing modality, hip flexion decreased from 211 ± 7° to 207 ± 7° and knee flexion decreased from 26 ± 4° to 24 ± 4° at the instant of ground contact in the unpredictable compared to predictable condition. During the stable landing modality, the knee joint abduction increased from ?0.3 ± 6° to ?3 ± 6° after initial ground contact in the unpredictable compared to predictable setting. The present results support our hypothesis that pre-programmed motor activity depends on the predictability of the landing modality during lateral movements. According to its adaptation in the frontal plane and in some extent in the sagittal plane, the hip joint seems to play the major role in the modulation of the pre-programmed activity for successful lateral jump execution in an unpredictable setting. However, these kinematic adaptations are concerning since these changes were associated with higher knee abduction during the stable landing modality and therefore with possible higher risk of injury.  相似文献   

13.
The aim of the study was to quantify the activation of arm and shoulder muscles during a static therapeutic climbing exercise and to investigate the possibility of altering the muscle activation through arm position (Jug, Undercling, Sidepull internal rotated, Sidepull external rotated), hand support (one-handed, double-handed) and wall inclination (0°, 12°). Electromyographic (EMG) activity of 14 healthy, climbing unexperienced males for the right m. biceps brachii (BB), m. serratus anterior (SA), m. upper, middle and lower trapezius (UT, MT, LT) showed mainly low to moderate EMG activation levels (BB: 4.1–40.1% maximum voluntary isometric contraction (MVIC), SA: 4.5–24.5% MVIC, UT: 1.3–28.0% MVIC, MT: 8.6–47.1% MVIC, LT: 3.8–47.3% MVIC). Significant differences occurred between the four arm positions for the UT and LT. The one-handed support revealed significant higher muscle activation than the double-handed support in every condition except for SA in Undercling arm position at 12° wall inclination. Increasing the wall inclination (from 0° to 12° overhang) led to a significant increase in muscle activation in nearly every exercise variation and muscle. These findings suggest that arm position, hand support and wall inclination are appropriate possibilities of altering muscle activation patterns in therapeutic climbing.  相似文献   

14.

Purpose: This study compared the relative peak torque and normalized electromyographic (EMG) mean frequency (MNF) responses during fatiguing isokinetic muscle actions for men versus women. Method: Twenty men (M age ± SD = 22 ± 2 years) and 20 women (M age ± SD = 22 ± 1 years) performed 50 maximal concentric isokinetic muscle actions of the leg extensors at a velocity of 180°/s while surface EMG signals were detected from the vastus lateralis, rectus femoris, and vastus medialis. The dependent variables were initial, final, and average peak torque; percent decline; the estimated percentage of fast-twitch fibers for the vastus lateralis; and the linear slope coefficients and y-intercepts for normalized EMG MNF versus repetition number. The data were analyzed with independent-samples t tests and 2-way mixed-factorial analyses of variance. Results: The mean initial, final, and average peak torque values for men were greater than those for women. There were no mean differences for percent decline and the estimated percentage of fast-twitch fibers for the vastus lateralis. There were also no sex differences for the linear slope coefficients, but there were differences among the muscles (vastus medialis>vastus lateralis>rectus femoris). The mean y-intercept for the vastus lateralis for men was greater than that for women. Conclusions: Men demonstrated greater peak torque values than those for women, but the declines in peak torque and normalized EMG MNF were similar between the sexes. The vastus medialis was more fatigue-resistant than both the vastus lateralis and rectus femoris.  相似文献   

15.
Abstract

The aim of the present study was to determine if two levels of task similarity influenced acquisition, retention, and transfer performance of three simple motor skills. Sixty right-handed subjects were randomly assigned to one of five (n = 12) experimental conditions. Each subject performed 72 trials during acquisition. Twenty-four trials were recorded for each movement task. Following a 5-min unfilled retention interval, subjects performed 4 trials on each task before completing 12 transfer trials of a novel movement. Contextual interference effects for acquisition and retention were supported for low but not high similarity tasks. Further, the results suggest that a different memory representation exists for high and low similarity tasks.  相似文献   

16.
The objective of this study is to clarify the functional roles of upper limb muscles during standing and seated cycling when power output increases. We investigated the activity of seven upper limb and trunk muscles using surface electromyography (EMG). Power outputs ranged from ~100–700 W with a pedalling frequency of 90 revolution per minute. Three-dimensional handle and pedal forces were simultaneously recorded. Using non-negative matrix factorisation, we extracted muscle synergies and we analysed the integrated EMG and EMG temporal patterns. Most of the muscles showed tonic activity that became more phasic as power output increased. Three muscle synergies were identified, associated with (i) torso stabilisation, (ii) compensation/generation of trunk accelerations and (iii) upper body weight support. Synergies were similar for seated and standing positions (Pearson’s r > 0.7), but synergy #2 (biceps brachii, deltoidus and brachioradialis) was shifted forward during the cycle (~7% of cycle). The activity levels of synergy #1 (latissimus dorsi and erector spinae) and synergy #2 increased markedly above ~500 W (i.e., ~+40–70% and +130–190%) and during periods corresponding to ipsi- and contralateral downstrokes, respectively. Our study results suggest that the upper limb and trunk muscles may play important roles in cycling when high power outputs are required.  相似文献   

17.
The control of human limb movement has been the focus of research for more than a century. A major issue to emerge from this work is the manner in which the central nervous system regulates electromyographic (EMG) activity to produce movements that differ in distance, velocity, and movement time. However the different methods of analysis often used to analyze EMG data could result in different kinematic-EMG relationships. In this study, participants performed an elbow flexion task to one of five distance goals (between 5 degrees and 50 degrees) using three movement speeds. EMG data from the right elbow flexors were compared using a trial-by-trial analysis and one based on averaged data. Averaging across trials underestimated biceps EMG amplitude at all movement distances and speeds compared to a trial-by-trial analysis. Averaging overestimated EMG burst duration compared to the trial-by-trial analysis. Peak agonist EMG amplitude was positively related to distance and inversely related to movement time. Agonist EMG duration was constant for movement distances less than 30 degrees but increased in the 50 degrees condition. The results support the view that peak EMG amplitude and duration can be controlled independently, but EMG duration changes only for longer distance movements when additional force is required.  相似文献   

18.
Abstract

The aim of this study was to assess fatigue during a simulated cross-country skiing sprint competition based on skating technique. Sixteen male skiers performed a 30-m maximal skiing speed test and four 850-m heats with roller skies on a tartan track, separated by 20 min recovery between heats. Physiological variables (heart rate, blood lactate concentration, oxygen consumption), skiing velocity, and electromyography (EMG) were recorded at the beginning of the heats and at the end of each 200-m lap during the heats. Maximal skiing velocity and EMG were measured in the speed test before the simulation. No differences were observed in skiing velocity, EMG or metabolic variables between the heats. The end (820–850 m) velocities and sum-iEMG of the triceps brachii and vastus lateralis in the four heats were significantly lower than the skiing velocity and sum-iEMG in the speed test. A significant correlation was observed between mean oxygen consumption and the change in skiing velocity over the four heats. Each single heat induced considerable neuromuscular fatigue, but recovery between the heats was long enough to prevent accumulation of fatigue. The results suggest that the skiers with a high aerobic power were less fatigued throughout the simulation.  相似文献   

19.
The purpose of this study was to evaluate the effects of whole-body vibration (WBV) on the muscle recruitment of selected upper and lower body muscles during the baseball swing. Participants were recreationally trained males (n = 16, 22 +/- 2 years, 181.4 +/- 7.4 cm, 84.7 +/- 9.0 kg), with previous baseball experience. Subjects participated in three randomized sessions on separate days, consisting of three sets of five swings offa hitting tee. Exercises (upper and lower body dynamic and static movements) with or without WBVexposure were performed between swing sets. During each swing, the gastrocnemius, biceps femoris, gluteus maximus, pectoralis major, latissimus dorsi, and triceps brachii were evaluated for electromyographic (EMG) activity. EMG values were normalized to EMG measured during maximal voluntary isometric contraction. Statistical analysis revealed no significant differences in EMG activity across the three treatments. In addition, the results displayed a specific muscle recruitment order during the swing, starting with the lower body followed by the upper body muscles. This study was the first to report the recruitment order during the baseball swing. Although acute exposure to WBV did not significantly alter the muscle recruitment, these results may prove useful for practitioners looking to enhance baseball swing performance.  相似文献   

20.
ABSTRACT

Ankle injuries are highly prevalent in ballet, with strength highlighted as a primary risk factor. To profile ankle strength, fourteen female ballet dancers (age: 19.29 ± 1.59 years) completed an isokinetic testing protocol comprising concentric eversion (CONEV) and inversion (CONINV), and, eccentric inversion (ECCINV) trials at four angular velocities (30° · s?1, 60° · s?1, 90° · s?1, 120° · s?1) for both the dominant and non-dominant limb. In addition to Peak Torque (PT) and the corresponding Dynamic Control Ratios (DCRs), angle-specific derivatives of strength (AST) and Functional Range (FR) were calculated. There was no evidence of any significant bilateral strength asymmetry (p = 0.90) across all metrics, and no significant interactions with limb and contraction mode or velocity. A significant main effect for contraction mode (p = 0.001) highlighted greater ECCINV strength – which was maintained with increasing isokinetic velocity – in contrast to reductions in CONEV and CONINV strength. Specifically, dancers are ECCINV dominant at angular velocities greater than 60° · s?1, which is likely to be characteristic of most functional tasks. The lack of bilateral asymmetry may be attributed to dance training interventions that facilitate bilateral development, but ipsilateral mode and velocity-specific asymmetries have implications for injury risk and the training needs of female ballet dancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号