首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Women are known to be less fatigable than men in single-joint exercises, but fatigue induced by running has not been well understood. Here we investigated sex differences in central and peripheral fatigue and in rate of force development (RFD) in the knee extensors after a half-marathon run. Ten male and eight female amateur runners (aged 25–50 years) were evaluated before and immediately after a half-marathon race. Knee extensors forces were obtained under voluntary and electrically evoked isometric contractions. Maximal voluntary isometric contraction (MVC) force and peak RFD were recorded. Electrically doublet stimuli were delivered during the MVC and at rest to calculate the level of voluntary activation and the resting doublet twitch. After the race, decreases in MVC force (males: ?11%, effect size [ES] 0.52; females: ?11% ES 0.33), voluntary activation (males: ?6%, ES 0.87; females: ?4%, ES 0.72), and resting doublet twitch (males: ?6%, ES 0.34; females: ?8%, ES 0.30) were found to be similar between males and females. The decrease in peak RFD was found to be similar between males and females (males: ?14%, ES 0.43; females: ?15%, ES 0.14). Half-marathon run induced both central and peripheral fatigue, without any difference between men and women. The maximal and explosive strength loss was found similar between sexes. Together, these findings do not support the need of sex-specific training interventions to increase the tolerance to neuromuscular fatigue in half-marathoners.  相似文献   

2.
This study investigated the relationships between aerobic characteristics and (i) neuromuscular fatigue induced by 2-min sustained isometric maximal voluntary contractions (MVC) and (ii) subsequent recovery, in the upper and lower limbs. In a pseudo-randomized order, eleven healthy males completed four sessions on different days: maximal incremental cycling test (100 W + 40 W every 2 min); maximal arm-cranking test (50 W + 20 W every 2 min); and 2-min sustained isometric MVCs of the knee extensors (KE) and elbow flexors (EF). Neuromuscular assessment was performed with transcranial magnetic and peripheral nerve stimulation to evaluate central and peripheral neuromuscular factors of fatigue and the subsequent recovery. Peak oxygen uptake, gas exchange threshold and the corresponding power outputs were correlated with recovery of voluntary force after the 2-min KE MVC. Regression analysis showed that power output at the gas exchange threshold alone explained 72% of the variability in ?recovery of KE voluntary force. No relationships with fatigue or recovery in EF were observed. These results suggest that participants with greater aerobic capacities experience the same amount of fatigue and faster recovery of voluntary force in KE but not EF. The potential reasons behind the relationship in KE but not EF are discussed.  相似文献   

3.
运动性肌肉疲劳的表面肌电非线性信号特征   总被引:13,自引:3,他引:10  
王健  方红光  杨红春 《体育科学》2005,25(5):39-43,64
研究目的在于探讨不同强度等长运动诱发肌肉疲劳过程中s EMG非线性信号变化特征及其与肌肉运动耐力的关系。10名青年大学生志愿者参加本次实验。采用4 0 %、6 0 %和80 %MVC强度的等长运动试验诱发肱二头肌疲劳,同步采集该肌肉s EMG信号并进行非线性C(n)和% DET和线性MPF分析。研究发现1)肌肉疲劳过程中s EMG信号的MPF和C(n)呈单调递减型变化,而% DET呈单调递增型变化;2 )不同强度运动负荷诱发肌肉疲劳过程中MPF、C(n)和% DET变化率具有明显的运动强度依赖性并与肌肉耐力运动成绩高度相关;3)以% DET变化率反映运动性肌肉疲劳的敏感度明显高于MPF和C(n)。  相似文献   

4.
This study investigated the time needed to change a motor program that specified the elbow flexor muscles to gradually increase the isometric force production from 15% to 75% of one's maximum voluntary contraction (MVC). A double-stimulation paradigm was used with the restriction that subjects (N = 12) be at 15% of their MVC before the presentation of the first stimulus. Subjects reacted to the first stimulus (randomly presented) by gradually increasing their isometric force from 15% to 75% of their MVC and then reacted to the second stimulus by altering the force production in one of four ways: (a) increasing the force to the 75% level rapidly instead of gradually, (b) discontinuing the increase and maintaining the level of force attained, (c) discontinuing all force production, or (d) reversing the direction of force so that it is produced by the elbow extensors. The data revealed that more time was needed to increase the force rapidly than to perform any of the other three conditions.  相似文献   

5.
老年人肌力流失与肌肉疲劳的肌动图研究   总被引:1,自引:0,他引:1  
研究目的:探讨老年人肌力流失对肌肉质量、最大肌力与爆发力的影响,并以肌动图(MMG)来观察老年人股外肌在不同强度表现时运动单位的激活与老化对肌肉疲劳的影响。研究方法:受试者为老年组与年轻组各10位。受试者实施股四头肌最大等长收缩、最快速度不同强度(75%、60%、45%1RM)的伸膝动作及45%的疲劳测试,记录向心期不同强度的MMG讯号。研究结果:老年组的绝对/相对最大肌力与爆发力皆明显低于年轻组(P〈0.05),而相对最大爆发力比最大肌力下降的比例高达46.2%;各强度的MMG振幅与平均功率频率皆小于年轻组(P〈0.05),显示老年组的肌纤维以慢肌为主,并发现老年组75%强度时的MMG振幅下降,表示老年人因高负荷募集不到快肌所致;MMG中位频率则无年龄差异。研究结论:老年人在静、动态力量表现有肌力流失的现象,老化对爆发力影响远超过对肌力影响,MMG讯号反应肌肉收缩的力学活动。  相似文献   

6.
Abstract

The purpose of this study was to compare twitch contractile properties of skeletal muscles in male athletes who train for power and endurance simultaneously (Nordic combined athletes) with athletes who train for endurance (cross-country skiers) and sedentary individuals. Ten Nordic combined athletes, 13 cross-country skiers, and 14 sedentary males aged 20–26 years participated. To determine the contractile properties of the plantarflexor muscles during isometric twitch, the posterior tibial nerve in the popliteal fossa was stimulated by supramaximal square wave pulses of 1 ms duration. Twitch peak force, maximal rates of force development and relaxation, contraction and half-relaxation times were measured. The percentage increase in twitch peak force after a 5-s maximal voluntary contraction (MVC) was taken as an indicator of post-activation potentiation. Nordic combined athletes had a significantly greater twitch post-activation potentiation and rate of force development and shorter contraction time than the other two groups (P < 0.05). They also had a greater (P < 0.05) twitch peak force than cross-country skiers. No significant differences in measured twitch contraction characteristics were found in cross-country skiers and sedentary males. We conclude that the twitch contractile properties of the plantarflexor muscles differed markedly in athletes who train for power and endurance simultaneously compared with athletes who predominantly train for endurance. As an indicator of long-term adaptation to simultaneous power and endurance training, increased twitch force-generation and potentiation capacity, and shortening of twitch contraction times in the plantarflexor muscles were observed in Nordic combined athletes.  相似文献   

7.
Abstract

This study investigated the time needed to change a motor program that specified the elbow flexor muscles to gradually increase the isometric force production from 15% to 75% of one's maximum voluntary contraction (MVC). A double-stimulation paradigm was used with the restriction that subjects (N = 12) be at 15% of their MVC before the presentation of the first stimulus. Subjects reacted to the first stimulus (randomly presented) by gradually increasing their isometric force from 15% to 75% of their MVC and then reacted to the second stimulus by altering the force production in one of four ways: (a) increasing the force to the 75% level rapidly instead of gradually, (b) discontinuing the increase and maintaining the level of force attained, (c) discontinuing all force production, or (d) reversing the direction of force so that it is produced by the elbow extensors. The data revealed that more time was needed to increase the force rapidly than to perform any of the other three conditions.  相似文献   

8.
A well-documented observation after eccentric exercise is a reduction in maximal voluntary force. However, little is known about the ability to maintain maximal isometric force or generate and maintain dynamic peak power. These aspects of muscle function were studied in seven participants (5 males, 2 females). Knee extensor isometric strength and rate of fatigue were assessed by a sustained 60 s maximal voluntary contraction at 80 degrees and 40 degrees knee flexion, corresponding to an optimal and a shortened muscle length, respectively. Dynamic peak power and rate of fatigue were assessed during a 30 s Wingate cycle test. Plasma creatine kinase was measured from a fingertip blood sample. These variables were measured before, 1 h after and 1, 2, 3 and 7 days after 100 repetitions of the eccentric phase of the barbell squat exercise (10 sets x 10 reps at 80% concentric one-repetition maximum). Eccentric exercise resulted in elevations in creatine kinase activity above baseline (274+/-109 U x l(-1); mean +/- s(x)) after 1 h (506+/-116 U x l(-1), P < 0.05) and 1 day (808+/-117 U x l(-1), P < 0.05). Isometric strength was reduced (P < 0.05) for 7 days (35% at 1 h, 5% at day 7) and the rate of fatigue was lower (P < 0.05) for 3 days at 80 degrees and for 1 day at 40 degrees. Wingate peak power was reduced to a lesser extent (P < 0.05) than isometric strength at 1 h (13%) and, although the time course of recovery was equal, the two variables differed in their pattern of recovery. Eccentrically exercised muscle was characterized by an inability to generate high force and power, but an improved ability to maintain force and power. Such functional outcomes are consistent with the proposition that type II fibres are selectively recruited or damaged during eccentric exercise.  相似文献   

9.
Abstract

Non-local muscle fatigue has been demonstrated with unilateral activities, where fatiguing one limb alters opposite limb forces. Fewer studies have examined if non-local fatigue occurs with unrelated muscles. The purpose of this study was to investigate if knee extensors fatigue alters elbow flexors force and electromyography (EMG) activity. Eighteen males completed a control and fatiguing session (randomised). Blood lactate was initially sampled followed by three maximal voluntary contractions (MVC) with the elbow flexors and two with the knee extensors. Thereafter, subjects either sat (control) or performed five sets of bilateral dynamic knee extensions to exhaustion using a load equal to the dominant limb MVC (1-min rest between sets). Immediately afterwards, subjects were assessed for blood lactate and unilateral knee extensors MVC, and after 1 min performed a single unilateral elbow flexor MVC. Two minutes later, subjects performed 12 unilateral elbow flexor MVCs (5 s contraction/10 s rest) followed by a third blood lactate test. Compared to control, knee extensor force dropped by 35% (p < 0.001; ES = 1.6) and blood lactate increased by 18% (p < 0.001; ES = 2.8). Elbow flexor forces were lower after the fatiguing protocol only during the last five MVCs (p < 0.05; ES = ~0.58; ~5%). No changes occurred between conditions in EMG. Elbow flexor forces significantly decreased after knee extensors fatigue. The effect was revealed during the later stages of the repeated MVCs protocol, demonstrating that non-local fatigue may have a stronger effect on repeated rather than on single attempts of maximal force production.  相似文献   

10.
The present study aimed to investigate the effects of a standardized fatiguing protocol on central and peripheral fatigue in knee-flexors and knee-extensors. Thirteen healthy men (age: 23?±?3 years; height: 1.78?±?0.09 m; body-mass: 73.6?±?9.2?kg) volunteered for the present study. Maximal voluntary contraction (MVC), Electromyography (EMG) activity, voluntary activation level (VAL) as an index of central fatigue and twitch potentiation as an index of peripheral fatigue were measured before and after the fatiguing protocol. The fatiguing protocol consisted of a 0.6 duty-cycle to exhaustion (6?s isometric contraction, 4?s recovery) at 70% MVC. After the fatiguing protocol, MVC decreased in both (Effect-size (ES)?=?1.14) and knee-extensors (ES?=?1.14), and EMG activity increased in both knee-flexors (ES?=?2.33) and knee-extensors (ES?=?1.54). Decreases in VAL occurred in knee-flexors (ES?=?0.92) but not in knee-extensors (ES?=?0.04). Decreases in potentiation occurred in both knee-flexors (ES?=?0.84) and knee-extensors (ES?=?0.58). The greater central occurrence of fatigue in knee-flexors than in knee-extensors may depend on the different muscle morphology and coupled with a greater tolerance to fatigue in knee-extensors. The present data add further insight to the complicated knee-flexors-to-knee-extensors strength relationship and the mechanisms behind the different occurrence of fatigue.  相似文献   

11.
Abstract

We investigated the effect of verbal encouragement on maximal voluntary contraction (MVC) level of the triceps surae muscle group. Our secondary focus was to examine whether the effect of verbal encouragement on MVC level varies as a result of conscientiousness. While the participants performed plantar flexion, MVCs of the triceps surae muscle group were measured using rectified and smoothed surface electromyography (rsEMG) during the absence and presence of verbal encouragement. Participants completed questions from the Five Factor Personality Inventory concerning conscientiousness and were divided into high- and low-conscientiousness groups according to a median split. The sample included 30 female and 53 male elite athletes. In the entire cohort, there was no significant difference in MVCs with and without verbal encouragement. When the sample was partitioned by conscientiousness scores, verbal encouragement led to a significant increase in MVC in the low-conscientiousness group, whereas verbal encouragement led to a non-significant decrease in MVC in the high-conscientiousness group. Percentage change in MVC across experimental conditions was significantly different between the groups, with a 9.72% increase during verbal encouragement of the low-conscientiousness group, and a 2.47% decrease during verbal encouragement of the high-conscientiousness group.  相似文献   

12.
PurposeThis study used downhill running as a model to investigate the repeated bout effect (RBE) on neuromuscular performance, running biomechanics, and metabolic cost of running.MethodsTen healthy recreational male runners performed two 30-min bouts of downhill running (DR1 and DR2) at a –20% slope and 2.8 m/s 3 weeks apart. Neuromuscular fatigue, level running biomechanics during slow and fast running, and running economy parameters were recorded immediately before and after the downhill bouts, and at 24 h, 48 h, 72 h, 96 h, and 168 h thereafter (i.e., follow-up days).ResultsAn RBE was confirmed by attenuated muscle soreness and serum creatine kinase rise after DR2 compared to DR1. An RBE was also observed in maximum voluntary contraction (MVC) force loss and voluntary activation where DR2 resulted in attenuated MVC force loss and voluntary activation immediately after the run and during follow-up days. The downhill running protocol significantly influenced level running biomechanics; an RBE was observed in which center of mass excursion and, therefore, lower-extremity compliance were greater during follow-up days after DR1 compared to DR2. The observed changes in level running biomechanics did not influence the energy cost of running.ConclusionThis study demonstrated evidence of adaptation in neural drive as well as biomechanical changes with the RBE after DR. The higher neural drive resulted in attenuated MVC force loss after the second bout. It can be concluded that the RBE after downhill running manifests as changes to global and central fatigue parameters and running biomechanics without substantially altering the energy cost of running.  相似文献   

13.
The aim of this study was to characterize forearm muscle fatigue identified by the decrease in electromyogram median frequency and/or fingertip force during intermittent exercise. Nine elite climbers (international competitive level, USA 5.14a on sight) and ten non-climbers were instructed to maintain a fingertip force of 80% of their maximal voluntary contraction force on a dynamometer mimicking a rock climbing grip during a 5 s effort/5 s rest cycle for 36 repetitions (i.e. 6 min of exercise). Elite climbers lasted twice as long as non-climbers (climbers: 3 min; non-climbers: 1 min 30 s) before the force could no longer be maintained (i.e. the failure point). After this moment, fingertip force decreased and stabilized until the end of the exercise around 50% maximum voluntary contraction force in non-climbers and 63% in elite climbers. Electromyogram median frequency showed a greater decrease in non-climbers than in elite climbers before the failure point. No change in median frequency was observed after the failure point in elite climbers or in non-climbers. These results confirm that elite climbers are better adapted than non-climbers for performing the intermittent fingertip effort before the failure point. After this point, the better fingertip force of elite climbers suggests different forearm muscle properties, while the electromyography results do not provide any indication about the fatigue process.  相似文献   

14.
The aim of the study was to evaluate, by an electromyographic (EMG) and mechanomyographic (MMG) combined approach, whether years of specific climbing activity induced neuromuscular changes towards performances related to a functional prevalence of fast resistant or fast fatigable motor units. For this purpose, after the maximum voluntary contraction (MVC) assessment, 11 elite climbers and 10 controls performed an exhaustive handgrip isometric effort at 80% MVC. Force, EMG and MMG signals were recorded from the finger flexor muscles during contraction. Time and frequency domain analysis of EMG and MMG signals was performed. In climbers: (i) MVC was higher (762 ± 34 vs 512 ± 57 N; effect size: 1.64; confidence interval: 0.65–2.63; < 0.05); (ii) endurance time at 80% MVC was 43% longer (34.2 ± 3.7 vs 22.3 ± 1.5 s; effect size: 1.21; confidence interval: 0.28–2.14; < 0.05); (iii) force accuracy and stability were greater during contraction (< 0.05); (iv) EMG and MMG parameters were higher throughout the entire isometric effort (< 0.05). Collectively, force, EMG and MMG combined analysis revealed that several years of specific climbing activity addressed the motor control system to adopt muscle activation strategies based on the functional prevalence of fast resistant motor units.  相似文献   

15.
This study examined whether short-term maximal resistance training employing fast-velocity eccentric knee extensor actions would induce improvements in maximal isometric torque and rate of force development (RFD) at early (<100 ms) and late phases (>100 ms) of rising torque. Twenty healthy men were assigned to two experimental groups: eccentric resistance training (TG) or control (CG). Participants on the TG trained three days a week for a total of eight weeks. Training consisted of maximal unilateral eccentric knee extensors actions performed at 180°s-1. Maximal isometric knee extensor torque (MVC) and incremental RFD in successive 50 ms time-windows from the onset contraction were analysed in absolute terms (RFDINC) or when normalised relative to MVC (RFDREL). After eight weeks, TG demonstrated increases in MVC (28%), RFDINC (0–50 ms: 30%; 50–100 ms: 31%) and RFDREL (0–50 ms: 29%; 50–100 ms: 32%). Moreover, no changes in the late phase of incremental RFD were observed in TG. No changes were found in the CG. In summary, we have demonstrated, in active individuals, that a short period of resistance training performed with eccentric fast-velocity isokinetic muscle contractions is able to enhance RFDINC and RFDREL obtained at the early phase of rising joint torque.  相似文献   

16.
The hypothesis, that sailing upwind in wind speeds above 12 knots causes fatigue, which manifests as a reduction in exerted hiking strap force and/or maximal isometric voluntary contraction force (MVC) of the knee extensors, was evaluated. Additionally, it was investigated if a relationship exists between maximal exerted hiking force (hMVC) and sailing performance. In part 1 of the study, 12 national level athletes sailed upwind for 2?×?10?min while hiking strap forces were continuously acquired. Before, in between and after sailing periods, the MVC of the knee extensors was measured. In part 2 of the study, hMVC was measured dry land in a hiking bench and correlated with the overall results at a national championship. Hiking strap force decreased from the first to the last minute in both 10?min sailing periods (430?131 vs. 285?130?N, P?<?.001 and 369?74 vs. 267?97 N, P?<?.001, respectively), but MVC was similar before, between and after the two 10?min sailing periods (878?215 vs. 852?202 vs. 844?211 130?N). In part 2, a significant positive correlation (r2?=?0.619, P?<?.01) was observed between hMVC and regatta results. In conclusion, upwind sailing in wind speeds above 12 knots causes sailing-specific fatigue as evidenced by a marked reduction in exerted hiking strap force. However, MVC of the knee extensors was not compromised ~45?s after hiking was terminated. Additionally, sailing performance is related to maximal hiking force.  相似文献   

17.
Abstract

The aim of this study was to characterize forearm muscle fatigue identified by the decrease in electromyogram median frequency and/or fingertip force during intermittent exercise. Nine elite climbers (international competitive level, USA 5.14a on sight) and ten non-climbers were instructed to maintain a fingertip force of 80% of their maximal voluntary contraction force on a dynamometer mimicking a rock climbing grip during a 5 s effort/5 s rest cycle for 36 repetitions (i.e. 6 min of exercise). Elite climbers lasted twice as long as non-climbers (climbers: 3 min; non-climbers: 1 min 30 s) before the force could no longer be maintained (i.e. the failure point). After this moment, fingertip force decreased and stabilized until the end of the exercise around 50% maximum voluntary contraction force in non-climbers and 63% in elite climbers. Electromyogram median frequency showed a greater decrease in non-climbers than in elite climbers before the failure point. No change in median frequency was observed after the failure point in elite climbers or in non-climbers. These results confirm that elite climbers are better adapted than non-climbers for performing the intermittent fingertip effort before the failure point. After this point, the better fingertip force of elite climbers suggests different forearm muscle properties, while the electromyography results do not provide any indication about the fatigue process.  相似文献   

18.
运动性肌肉疲劳过程中主动肌与拮抗肌sEMG相干性分析   总被引:3,自引:1,他引:2  
目的:通过静态疲劳负荷实验过程中主动肌与拮抗肌sEMG的相干性分析探索运动性肌肉疲劳过程中中枢神经系统对主动肌与拮抗肌共神经输入(common neural inputs)同步支配的变化特征。方法:以10名健康男性青年志愿者为研究对象,记录受试者以50%MVC负荷强度静态屈肘运动诱发肌肉疲劳过程中主动肌肱二头肌与拮抗肌肱三头肌的sEMG,为考查疲劳因素对相干性分析结果的影响作用,对记录的sEMG按运动持续时间平均分为两段,分别对两段sEMG进行相干性分析处理。结果:在疲劳负荷实验过程中,肱二头肌与肱三头肌MF指标随运动持续时间表现出显著性的单调递减变化趋势。从相干性分析结果看,在beta频段和gamma频段内,运动后半段肱二头肌与肱三头肌sEMG相干函数值要明显小于运动前半段,而tremor频段内无显著性差异。结论:在50%MVC静态负荷屈肘运动致肌肉疲劳过程中,随着负荷运动持续时间的增加,中枢神经系统对主动肌肱二头肌与拮抗肌肱三头肌共神经输入同步支配下降,这可能是由于主动肌与拮抗肌脊髓运动神经元兴奋性及运动皮层对脊髓运动神经元激活能力随疲劳发展的下降不同步性及为维持既定的收缩负荷,中枢神经系统对主动肌与拮抗肌运动单位的募集策略采取不同的调节方式造成的。  相似文献   

19.
‘A tribute to Dr J. Rogge’ aims to systematically review muscle activity and muscle fatigue during sustained submaximal quasi-isometric knee extension exercise (hiking) related to Olympic dinghy sailing as a tribute to Dr Rogge’s merits in the world of sports. Dr Jacques Rogge is not only the former President of the International Olympic Committee, he was also an orthopaedic surgeon and a keen sailor, competing at three Olympic Games. In 1972, in fulfilment of the requirements for the degree of Master in Sports Medicine, he was the first who studied a sailors’ muscle activity by means of invasive needle electromyography (EMG) during a specific sailing technique (hiking) on a self-constructed sailing ergometer. Hiking is a bilateral and multi-joint submaximal quasi-isometric movement which dinghy sailors use to optimize boat speed and to prevent the boat from capsizing. Large stresses are generated in the anterior muscles that cross the knee and hip joint, mainly employing the quadriceps at an intensity of 30–40% maximal voluntary contraction (MVC), sometimes exceeding 100% MVC. Better sailing level is partially determined by a lower rate of neuromuscular fatigue during hiking and for ≈60% predicted by a higher maximal isometric quadriceps strength. Although useful in exercise testing, prediction of hiking endurance capacity based on the changes in surface EMG in thigh and trunk muscles during a hiking maintenance task is not reliable. This could probably be explained by the varying exercise intensity and joint angles, and the great number of muscles and joints involved in hiking.

Highlights

  • Dr Jacques Rogge, former president of the International Olympic Committee and Olympic Finn sailor, was the first to study muscle activity during sailing using invasive needle EMG to obtain his Master degree in Sports Medicine at the Ghent University.

  • Hiking is a critical bilateral and multi-joint movement during dinghy racing, accounting for >60% of the total upwind leg time. Hiking generates large stresses in the anterior muscles that cross the knee and hip joint.

  • Hiking is considered as a quasi-isometric bilateral knee extension exercise. Muscle activity measurements during sailing, recorded by means of EMG, show a mean contraction intensity of 30-40% maximal voluntary contraction with peaks exceeding 100%.

  • Hiking performance is strongly related to the development of neuromuscular fatigue in the quadriceps muscle. Since maximal strength is an important determinant of neuromuscular fatigue during hiking, combined strength and endurance training should be incorporated in the training program of dinghy sailors.

  相似文献   

20.
局部肌肉疲劳对踝关节本体感觉的影响   总被引:1,自引:0,他引:1  
张秋霞  张林  王国祥 《体育科学》2011,31(3):68-73,80
目的:通过分析局部肌肉疲劳前、后踝关节在矢状面内运动的位置觉、肌肉力觉的变化,探讨局部肌肉疲劳对踝关节本体感觉的影响,为踝关节损伤防治和康复训练提供基础理论和实验依据。方法:选取14名无踝关节疾患的受试者为实验对象,踝关节位置觉采用对踝关节跖屈5°的被动定位、被动复位能力进行测试,肌肉力觉采用受试者踝关节对跖屈肌群25%最大等长峰值力矩值的复制能力进行测试;疲劳测试采用60最大等速向心运动模式;对于局部肌肉疲劳前、后踝关节本体感觉的对比,采用重复测量方差分析进行。结果:踝关节的位置觉(VEJPS和AEJPS)和肌肉力觉(RVEFS和RAEFS)在局部肌肉疲劳前、后的差异均有统计学意义(P<0.05)。结论:1)最大等速向心运动至局部肌肉疲劳后,踝关节的位置觉均较疲劳前下降;2)最大等速向心运动至局部肌肉疲劳后,踝关节的肌肉力觉均较疲劳前下降;3)踝关节最大等速向心运动至局部肌肉疲劳后,受试者的中枢控制策略发生改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号