首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在讨论函数的单调性时 ,会遇到确定函数的单调区间的问题 .为解决这类问题 ,常需寻找区分单调增区间与单调减区间的分界点 .下面介绍“零点等值法” ,能对一些函数解决这一问题 .例 1 讨论函数 y=x+ 1 -x的单调区间 .解 函数的定义域为 (-∞ ,1 ].设x1 <x2 ≤ 1 ,则y1 -y2 =x1 + 1 -x1 -x2 -1 -x2=(x1 -x2 ) 1 -11 -x1 + 1 -x2令x1 =x2 =x ,由1 -11 -x + 1 -x =0 ,得x=34.∴函数的单调区间可能是-∞ ,34和 34,1 .下面给出证明 .当x1 <x2 ≤ 34时 ,x1 -x2 <0 ,1 -11 -x1 + 1 -x2>0 ,∴y1 <y2 ,所以 ,函数 y …  相似文献   

2.
用函数方法证明不等式 ,常常能够方便地给出证明 .用函数方法证明不等式的关键是结合不等式的结构特征构造适当的函数 ,以便于利用这一函数的有关性质证明所给的不等式 .例 1 若a >b>0 ,m >0 .求证 :ab >a +mb+m.证明 令 f(x) =a+xb +x.由a>b可设a =b+c(c >0 ) ,则f(x) =b+x +cb +x =1+cb +x.当x∈ (0 ,+∞ )时 ,f(x)为减函数 .∵ m >0 ,∴ f(m) <f(0 ) .即 ab >a+mb+m.注 用函数方法证明不等式 ,往往要利用所构造函数的单调性 .例 2 设a、b、c∈R .证明 :a2 +ac+c2 +3b(a+b+…  相似文献   

3.
函数 y =x4 +px2 +q的性质及应用在各类考卷中经常出现 ,笔者在此给出其应用较为广泛的两个性质———单调性和恒成立性。性质 1 对于函数y =x4 +px2 +q  (p、q∈R) ,(Ⅰ ) p≥ 0时 ,单调减区间为 (-∞ ,0 ];单调增区间为 (0 ,+∞ )。(Ⅱ ) p <0时 ,单调减区间为 (-∞ ,--p/2 ]和 [0 ,-p/2 ];单调增区间为 [--p/2 ,0 ]和[-p/2 ,+∞ )。下面用复合函数单调性理论来证明 (Ⅱ )。令u =x2 ,则 y =u2 +pu +q ,显然u =x2 在x∈ (-∞ ,0 ]上是减函数 ,在x∈(0 ,+∞ )上是增函数 ,y=u2 +pu +q在u∈ (-∞ ,-p…  相似文献   

4.
第 一 试一、选择题 (每小题 6分 ,共 3 6分 )1.已知x、y是两个不等的正数 ,则A =x2 +y22- x +y2 ,B =x +y2 -xy ,C =xy - 21x + 1y的大小顺序是 (   ) .(A)A >B >C     (B)A >C >B(C)B >A >C  (D)B >C >A2 .函数y =f(x)与y =g(x)有相同的定义域 ,对定义域中任何x ,有f(x) +f(-x) =0 ,g(x)g(-x)= 1,且当x≠ 0时 ,g(x)≠ 1.则F(x) =2f(x)g(x) - 1+f(x)是 (   ) .(A)奇函数  (B)偶函数(C)既是奇函数又是偶函数(D)非奇非偶函数3 .已知a、b为非零常数 .若M =a…  相似文献   

5.
一、定义法 由单调性的定义 ,只要确定“f(x1 ) - f(x2 )”的符号即可 .例 1 试确定y =2x +3x +1的单调区间 .解 :函数的定义域为 ( -∞ ,- 1)∪ ( - 1,+∞ ) .设x1 >x2 (x1 、x2 ≠ - 1) ,则Δ =f(x1 ) -f(x2 ) =2x1 +3x1 +1- 2x2 +3x2 +1=x2 -x1 ( 1+x1 ) ( 1+x2 ) .由x1 >x2 ,得x2 -x1 <0 .易知 ,当x1 、x2 ∈ ( -∞ ,- 1)时 ,1+x1 <0 ,1+x2 <0 ,Δ <0 ;当x1 、x2 ∈ ( - 1,+∞ )上时 ,Δ <0 .可知函数 y =2x +3x +1在 ( -∞ ,- 1)及 ( - 1,+∞ )上都是单调递减的 .注意 :对于Δ =f(x1 ) -f(x…  相似文献   

6.
涉及函数单调性的问题包括解不等式、求最值、比较大小、乃至解方程 ,这些都是近年高考的热点问题 .若利用单调性定义求解 ,一般较为复杂 ,做此类题目时学生往往半途而废 ,失分率较高 .高中教材引入导数以后 ,利用导数解决这类问题就变得比较简单 ,学生也易于接受 .函数的单调性与其导数的关系 :设函数 y =f(x)在某个区间内可导 ,则当 f′(x) >0时 f(x)为增函数 ;当 f′(x) <0时 f(x)为减函数 .例 1 求函数 f(x) =x2 + 2x,x∈ (0 ,+∞ )的单调区间 .解 f′(x) =2x-2x2 =2 (x3-1 )x2 ,令 f′(x) =0 ,得x=1 .∵x>…  相似文献   

7.
本文从一个定理的证明出发 ,利用数学知识探讨椭圆的光学性质 .定理 :圆锥曲线E :mx2 +ny2 =1(m >0 ,n >0或mn <0 ) ,不平行于对称轴的任一弦AB与过AB中点M的直线OM的斜率之积为常数 - mn .证明 :设A(x1 ,y1 )、B(x2 ,y2 )、M (x0 ,y0 ) .由 mx21 +ny21 =1,mx22 +ny22 =1,两式相减 ,得m(x1 +x2 ) (x1 -x2 ) +n(y1 +y2 ) (y1 -y2 ) =0 .因x1 +x2 =2x0 ,y1 + y2 =2 y0 ,故mx0 (x1 -x2 ) +ny0 ( y1 - y2 ) =0 .又∵ x1 -x2 ≠ 0 ,x0 ≠ 0 ,∴  y1 - y2x1 -x2·y0x0=- …  相似文献   

8.
构造函数法是证不等式的一种重要方法 ,本文谈谈构造函数法证不等式的几种思考途径 .途径一 利用函数的单调性构造一个函数 ,使原不等式 (或经等价变形后 )的左右两边是这个函数在某一个单调区间上的两个值 ,就可以利用函数的单调性证明不等式 .例 1 已知a、b、c∈R ,且a b c =1,求证 :abc 1abc≥ 2 712 7.证明 令 f(x) =x 1x ,取 0 <x1<x2 <1,则f(x2 ) - f(x1) =(x2 -x1) 1x2 - 1x1=(x2 -x1) 1- 1x1x2 <0 ,所以 f(x)在 (0 ,1)上为减函数 .又 0 <abc≤ a b c33=12 7,∴f(abc) ≥ f 12 …  相似文献   

9.
导数的应用     
根据今年高考精神 ,导数的应用将作为一个重要知识点在高考卷中考查 .课本上给出了导数的概念及一些简单函数的导数 ,下面就导数的应用归纳如下 :一、利用导数判断函数的单调性一般地 ,设函数 y=f(x)在某个区间内可导 ,如果f′(x) >0 ,则 f(x)为增函数 ;如果f′(x) <0 ,则 f(x)为减函数 ;如果在某个区间内恒有f′(x) =0 ,则 f(x)为常数 .例 1 确定 f(x) =x4- 4x2 +5在哪个区间内是增函数 ,哪个区间内是减函数 .解 :f′(x) =4x3 - 8x =4x(x2 - 2 ) .令 4x(x2 - 2 ) >0 ,解得x >2或 - 2 <x <0 .因此 ,当x∈ ( …  相似文献   

10.
题 设a>0 ,求函数f(x) =x-ln(x +a) (x∈ ( 0 ,+∞ ) )的单调区间 .解  f′(x) =12x- 1x +a =x- 2 x+a2x(x+a) ,因为a>0 ,x >0 ,所以 2 x >0 ,x +a >0 .所以f′(x)与x - 2 x+a同号 ,令t =x ,则x- 2 x+a =(t- 1) 2 + (a - 1)(ⅰ )当a >1时 ,f′(x) >0 ,所以 f(x)在 ( 0 ,+∞ )单调递增 ;(ⅱ )当a =1时 ,f′(x)≥ 0 ,且只在x =1处f′(x) =0 ,所以 f(x)在 ( 0 ,+∞ )单调递增 ;(ⅲ )当 0 <a <1时 ,令 (t- 1) 2 + (a - 1) =0得t =1± 1-a ,此时x =t2 =2 -a± 2 1-a ,显然当t∈ (…  相似文献   

11.
函数的奇偶性是函数的重要性质之一 ,其应用十分广泛 .本文要介绍函数的奇偶性在求函数解析式、比较函数值大小等方面的应用 ,以及如何构造奇偶函数解决一些方程、不等式或参数值的问题 .供学习参考 .一、利用奇偶函数确定对称区间上的单调性规律 :奇函数在对称区间上单调性相同 ,偶函数在对称区间上单调性相反 .(证略 )例 1 已知函数f(x)在 ( 2 ,9)上递增 ,且f(x)是奇函数 ,则函数f(x)在 ( -9,-2 )及( -7,-5 )上单调性如何 ?解 :∵f(x)是奇函数 ,且f(x)在 ( 2 ,9)内递增 ,而 ( -9,-2 )与 ( 2 ,9)是关于原点对称的区间 ,故函数f…  相似文献   

12.
有些不等式的证明 ,如果采用常规方法 ,往往不易下手或比较冗繁 ,但若从函数思想考虑 ,按照函数的某些性质适当地构造函数模型 ,问题可能容易解决 .一、利用单调性构造函数模型证不等式构造一个函数 ,使原不等式 (或经等价变形后 )的左右两边是这个函数在其一个单调区间上的两个值 ,就可以利用函数的单调性证明不等式 .例 1 已知x >0 ,求证 :x 1x-x 1x 1≤ 2 - 3.证明 :设u =x 1x,则u≥ 2 .又u2 =x 1x 2 ,∴ f(x) =x 1x-x 1x 1=u -u2 - 1=1u u2 - 1.当u≥ 2时 ,这是一个关于u的减函数 ,故当u…  相似文献   

13.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

14.
定义 :y =ax2 +bx +c…… (1)与 y =cx2 +bx +a…… (2 )称为对逆二次函数。其中a≠c ,ac≠ 0。性质 :1、它们有共同的定义域 ,有共同的判别式△ =b2 - 4ac ,当a、c同号时 ,其图象的开口方向相同 ,当a、c异号时 ,其图象的开口方向相反。2、当b =0时 ,函数 y =ax2 +bx +c与 y =cx2 +bx +a都是偶函数。当b≠ 0时 ,都是非奇非偶函数。3、y =ax2 +bx +c当a >0时 ,在区间 (-∞ ,- b2a]上是减函数 ,在区间 [- b2a,+∞ )上是增函数 ,当a <0时则反之。y =cx2 +bx +a当c <0时 ,在区间 (-∞ …  相似文献   

15.
由奇函数、偶函数的图象定理知 :若f( -x) =-f(x) ,则函数f(x)的图象关于原点对称 ;若 f( -x) =f(x) ,则函数 f(x)的图象关于 y轴对称 .下面我们研究此结论的推广情况 .1 若 f(a -x) =-f(a+x) ,则函数f(x)的图象关于点 (a ,0 )对称 ;2 若 f( -x) =2a -f(x) ,则函数f(x)的图象关于点 ( 0 ,a)对称 ;3 若f(a-x) =f(a +x) ,则函数f(x)的图象关于直线x =a对称证明  1 由 f(a-x) =-f(a +x)得 ,函数f(a+x)是奇函数 ,从而函数 f(a+x)的图象关于原点对称 ,由此得函数f(x)的图象关于点 (a …  相似文献   

16.
函数思想贯穿高中数学课程 ,历来是高考和竞赛考查的重点 ,利用函数思想来解题 ,可以增强学生知识的系统性以及函数与各类知识的相互联系和渗透 .本文将举几例介绍函数思想在非函数题中的渗透和应用 .一、函数思想在方程中的渗透例 1 若方程x2 +(m+2 )x+3 =0的两根均大于 1 ,求m的范围 .解 令f(x) =x2 +(m+2 )x +3 ,则由题设知f( 1 ) >0 ,-b2a>1 ,Δ >0 ,即m >-6,-m+22 >1 ,(m +2 ) 2 -1 2 >0 .解得 -6<m <-2 3 -2 .二、函数思想在不等式中的渗透例 2  ( 2 0 0 1年全国高考题 )已知 :i,m ,n是正整数 ,且 1 <i≤m <…  相似文献   

17.
一、选择题 :(本大题 12小题 ,每小题 5分 ,共 6 0分 ,每小题给出的四个选项中 ,只有一项是符合题目要求的 )1.已知集合A ={y|y =logx2 ,x >1},B ={y| y =( 12 ) x ,x >1},则A ∪B等于 (  )A .{y| 0 <y<12 }  B{y| y >0 }C .ΦD .R2 .下列函数中 ,同时具有性质 :①图象过点 ( 0 ,1) ;②在区间 ( 0 ,+∞ )上是减函数 ;③是偶函数 ,这样的函数是 (  )A .f(x) =x2  B .f(x) =log2 ( |x|+2 )C .f(x) =( 12 ) |x|  D .f(x) =2 |x|2 (新 )下列导数正确的是 (   )A .(x +1x)′ =…  相似文献   

18.
函数的单调性是函数的重要性质之一 ,平时的教学中我们对于证明函数的单调性 ,求函数的单调区间比较熟悉 ,但对于利用函数的单调性巧妙解题 ,却知之不多。本文归纳介绍它的一些应用 ,供参考。1 求值域例 1 求函数 y=3 x 2 -x -7的值域。解  y=3 9x 2 x -7,∵x 2 x -7在 [7, ∞ )上单调增 ,∴ y在 [7, ∞ )上单调减 ,∵x≥ 7,∴ 0 <f(x)≤f( 7) =33 ,故 y∈ ( 0 ,33 ]。例 2 求函数 y=x 1x 3 3的值域。解  y=x 3 1x 3=[x 3-1x 3]2 2 ,∵在 [0 , ∞ )上 ,x 3≥ 3,∴x 3>1x 3,又x 3-1x 3在 […  相似文献   

19.
题目 已知二次函数y1=x2 - 2x- 3.( 1 )结合函数y1的图像 ,确定当x取什么值时 ,y1>0 ,y1=0 ,y1<0 ;( 2 )根据 ( 1 )的结论 ,确定函数y2 =12 ( |y1| -y1)关于x的解析式 ;( 3)若一次函数y =kx +b(k≠ 0 )的图像与函数y2 的图像交于三个不同的点 ,试确定实数k与b应满足的条件 .该题是天津市 2 0 0 2年中考题 .图 1由图 1及绝对值意义易得 :( 1 )当x <- 1或x>3时 ,y1>0 ;当x =- 1或x =3时 ,y1=0 ;当 - 1 <x <3时 ,y1<0 .( 2 )y2 =0 (x≤ - 1或x≥ 3) ,-x2 + 2x + 3(- 1<x <3) .而问题 ( 3)有较强的综合性 ,…  相似文献   

20.
文 [1]给出了广义奇偶函数的概念 :对于函数 f (x) ,若存在常数 a,b,使得函数定义域内任意 x,都有 f (a + x ) =-f (b-x)成立 ,则称 f (x)为广义奇函数 .特别地 ,当 a =b = 0时 ,f (x)是奇函数 .对于函数 f (x) ,若存在常数 a,b,使得函数定义域内任意 x,都有 f (a + x) =f (b -x)成立 ,则称 f (x)为广义偶函数 .特别地 ,当 a =b= 0时 ,f (x)是偶函数 .本文给出广义奇偶函数的性质 :定理 1 广义奇函数的图像关于点(a + b2 ,0 )成中心对称图形 ,广义偶函数的图像关于直线 x =a + b2 成轴对称图形 .证明 :(1)设 f (x)为广义奇函数 ,则存在常数…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号