首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
不等式a~3+b~3+c~3≥3abc的证法及推广   总被引:1,自引:0,他引:1  
现行教材中三元基本不等式 :“若 a,b,c∈R+ ,则 a3+ b3+ c3≥ 3 abc,当且仅当 a =b =c时 ,等式成立 .”是用因式分解方法证明 ,但分解需要一定技巧 .笔者在教学中了解 ,学生除了欣赏很难掌握 .笔者从学生已有的知识出发 ,通过证明一般的情况 ,导出三元基本不等式的证明 .要证上述“若 a,b,c∈ R+ ,则 a3+ b3+ c3≥ 3 abc,不等式成立 .”学生已有的知识是 :若 a∈ R+ ,a≥ a成立 ,(a∈ R也成立 )若 a,b∈ R+ ,a2 + b2 =2 ab成立 ,当且仅当 a =b时 ,等式成立 .(a,b∈ R也成立 ) ,自然联想 :a,b,c,d∈ R+ ,a4 + b4 + c4 +d4≥ 4abcd是否成…  相似文献   

2.
在发表文[1]时,编者按中提出了方法的适用范围、可靠性、步骤等尚可探讨.下述定理完满地回答了这一问题.定理方程(*)(ax~2+b)/((cx~2+d)=(-dx+b)/(cx-a))~(1/2)(a,b,c,d∈R,ad≠bc)与方程 (1)(ax~2+b)/(cx~2+d)=x(x≥0)和(Ⅱ){(a~2+cd)x~2+(ad-bc)x+d~2+ab=0,(ax~2+b)/cx~2+d≥0,a~2+cd≠0}等价.  相似文献   

3.
用初等方法给出方程f~2(x)=x的所有解,其中f(x)=(ax~2+bx+c)/(dx+e)(a,b,c,d,e∈R)。  相似文献   

4.
文 [1]给出了条件 x+ y=1下 1xn+ λyn的最小值定理 ,并利用 (a2 + b2 ) (c2 + d2 )≥ (ac+ bd) 2 (a,b,c,d∈ (0 ,+∞ )和待定系数法证明之 .定理 已知 x,y,λ∈ (0 ,+∞ )且 x+ y=1,则当且仅当 y∶ x=λ1n+ 1 时 ,1xn+ λyn(n∈N* )取最小值 ,最小值为 (1+ λ1n+ 1 ) n+ 1 .本文给出定理的一个简单证明 .证明 ∵x,y,λ∈ (0 ,+∞ ) ,n∈ N* ,且x+ y=1,∴ 1xn+ λyn=(1xn+ λyn) (x+ y) n =(1xn+λyn) (C0nxn+ C1 nxn-1 y+ C2nxn-2 y2 +… + Crnxn-ryr+… + Cnnyn)=1+ C1 nyx + C2ny2x2 +… + Crnyrxr +… + Cnnynxn+ λC0nxnyn + …  相似文献   

5.
文 [1]、[2 ]证明了下面的等式 :设 a,b,c,d∈ (0 ,+∞ ) ,且 c+d=1,c2a+d2b=1a+b,求证 :c4a3 +d4b3 =1(a+b) 3 . 1文 [2 ]还把 1式推广为 :cm + 1am +dm + 1bm =1(a+b) m. 2本文给出 1的不等式证法 ,并把 1,2式的条件推广 ,同时给出其应用 .1 简证 由 x2y≥ 2 x- y知c2aa+b≥ 2 c- aa+b,d2ba+b≥ 2 d- ba+b.因为 c+d=1,所以 c2aa+b+d2ba+b≥ 2 (c+d) - (aa+b+ba+b) =1.由等号成立条件知 c=aa+b,d=ba+b,故 c4a3 +d4b3 =a4a3 (a+b) 4 +b4b3 (a+b) 4 =1(a+b) 3 .2 推广定理 设 a,b,c,d∈ (0 ,+∞ ) ,m,n∈N* ,m≠ n,若 c+d=1且 cm + 1am …  相似文献   

6.
一、选择题 (本大题共 12小题 ,每小题 5分 ,共60分 ,每小题 4个选项中 ,只有一项正确 )1.设全集为R ,A ={x|-4 相似文献   

7.
本文所研究的是一道美国第七届数学奥林匹克试题 ,它新颖、别致 ,是一道涉及五个变量的条件最值问题 .笔者研究后发现 ,它的解法相当多 ,不下于 1 6种 .现将其中 6种鲜为人知的新解法一一写出来 ,与大家交流 .问题 :已知a、b、c、d、e∈R ,a+b +c+d+e =8,a2 +b2 +c2 +d2 +e2 =1 6,试求e的最大值 (美国第七届数学奥林匹克试题 ) .解法 1 :(基本不等式法 )由基本不等式 2xy≤x2 +y2 (x、y∈R)得 (x+y) 2 ≤ 2 (x2 +y2 )  ( 1 )令x =a+b ,y=c+d ,于是 ,由式( 1 )得[(a+b) +(c+d) ]2 ≤ 2 [(a+b) 2 +(c+d) 2 ]  ( 2 )=2 (a2 +b2 +c2 +d2 +2ab…  相似文献   

8.
本文推广了如下两个关于对称式的不等式 :x2 yz +y2 zx +z2 xy ≥x2 +y2 +z2   (x ,y ,z∈R ,x≥y≥z >0 ) ,ab(a +b) +bc(b +c) +ca(c +a)≤ 32 (a +b) (b +c) (c +a) ,(a ,b ,c∈R+ )  相似文献   

9.
在求函数y=(x2+t+1)/√x2+t(t为常数)的最小值问题时,学生们往往会将原函数变形为y=√x2+t+1/√x2+t,于是想到利用不等式(a+b)/2≥√ab(a,b∈R+)(*),马上得到ymin=2,请看下面例题:  相似文献   

10.
《数学方法与解题方法论》第 130页有这样一个命题 :形如 aa…aan个bb…bbn个(a≠ 0 ,a,b∈ { 0 ,1,2 ,3,… ,8,9} ,n∈ N* )能够表示成两个连续自然数的乘积的充要条件是 a=1,b=2 .笔者经过仔细的证明 ,发现此命题是错误的 ,应修正为 :形如 aa… aan个bb… bbn个的自然数 (a≠ 0 ,a,b∈ { 0 ,1,2 ,3,… ,8,9} ,n∈N* )能够表示成两个连续自然数的乘积的充要条件是 a=1,b= 2或 a=4 ,b=2或 a=9,b=0 .证明  (必要性 ) :aa…aan个bb…bbn个(n∈N* )=(1+10 1 +10 2 +… +10 n-1 )× 10 na+(1+10 1 +10 2 +… +10 n-1 ) b=(1+10 1 +10 2 +… +…  相似文献   

11.
已知a、b、c、d、e是实数且满足a+b+c+d+e=8,a~2+b~2+c~2+d~2+e~2=16,试确定e的最大值。(美国第七届中学数学竞赛题) 解法一:判别式法 a+b+c+d+e=8 (1) a~2+b~2+c~2+d~2+e~2=16 (2)消去a得2b~2-2(8-c-d-e)b+(8-c-d-e)~2 +c~2+d~2+e~2-16=0因为b∈R,所以 (?)_1=4(8-c-d-e)~2-8[(8-c-d-e)~2 +c~2+d~2+e~2-16]≥0即3c~2-2(8-d-e)c+[(8-d-e)~2 -2(16-d~2-e~2)]≤0由于c∈R,因而关于c的二次函数的图象与x轴相交,所以 (?)=4(8-d-e)~2-12[(8-d-e)~2 -2(16-d~2-e~2)]≥0即4d~2-2(8-e)d+(8-e)~2-3(16-e~2)≤0又因d∈R,故关于d的二次函数图象与x轴相交,所以  相似文献   

12.
原命题已知a、b、c∈R~+,且两两不等,求证: 2(a~3+b~3+c~3) >a~2(b+c)+b~2(c+a)+c~2(a+b). 这是高中《代数》(甲种本)第二册复习参考题三(A组)第5题,本文对该题作进一步的探讨。一、原命题的改进和拓广首先指出原命题可改进为命题一已知a、b、c∈R~+,且不全相等,则 2(a~3+b~3+c~3) >a~2(b+c)+b~2(c+a)+c~2(a+b). 其证明参见下面命题二的证明。二、分析探索,拓广命题原命题给出的不等式两边都是齐次式,我们可以从项数和指数两个方面进行推广。命题二已知a、b、c、d∈R~+,则 3(a~3+b~3+c~3+d~3)  相似文献   

13.
一、选择题1.已知m<0,n>0,且m+n>0,则下列各式中正确的是().A.-n2b2(2)a5+b5>a3b2+a2b3(3)a2+b2E2(a-b-1)(4)ab+ba>2这四个式子中,恒成立的有().A.4个B.三个C.2个D.1个3.设an,m,n∈N,a=(lgx)m+(lgx)-m,b=(lgx)n+(lgx)-n,x>1,则a…  相似文献   

14.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

15.
<数学通报>2001年2月号问题1300:设a,b,c,d∈R,且a+b+c+d=2,ab+ac+ad+bc+bd+cd=-(8)/(3),求b+c+d的最大值和最小值.  相似文献   

16.
<数学通报>2001年2月号数学问题1 300: 设a,b,c,d∈R,且a+b+c+d=2,ab+ac+ad+bc+bd+cd=-(83),求b+c+d的最大值和最小值.  相似文献   

17.
曹军先生在<中学数学研究>2002年第3期<一个椭圆最值问题的多角度探究>一文中,谈到函数y=a/(sinx)qP+b/(cosx)qP(a,b∈R+,p,q∈N,x∈(0,π/2))的最小值,给出了下面的结论:  相似文献   

18.
在教学中,我们常发现有的学生在分析问题时,往往是顾此失彼,以偏概全,反映出其挖掘隐含条件的能力较差。本文就如何培养学生挖掘隐含条件的能力,提高解题的正确性,谈几点体会。一、注意一些问题与结论成立的隐含的前提条件例1、已知函数y=f(x)=ax+bcx+d(x≠-dc,x∈R)中a、b、c、d均不为零。试求a、b、c、d满足什么条件时,它的反函数是它自身。错解:先由y=ax+bcx+d(x≠-cd,X∈R)两边同乘以cx+d得:cx·y+dy=ax+b∴(cy-a)x=b-dy①两边同除以cy-a得:x=b-dycy-a②∴反函数f-1(x)=b-dxcx-a(x≠ca,X∈R)再由f(x)=f-1(x)得a+d=0至此有的学生自认为…  相似文献   

19.
高中代数第二册(甲种本)P91例7证明了:若a、b、m∈R~+,且b>a,则a+m/b+m>a/b。(1)这是真分数的一个性质,将这个命题稍加变形可得假分数类似的性质: 若a、b、m∈R~+且b>a则b+m/a+m相似文献   

20.
在不等式单元中,有这样一组重要不等式: a2+b2≥2ab(a、b∈R),a2+b2/2≥(a+b/2)2(a、b∈R),a2+b2+c2≥ab+bc+ac(a、b、c∈R)以及a+b/2≥√ab(a、b∈R+).在这组不等式中,后三个不等式均是由第一个不等式推导出来的,其结构特点:①不等式左右两端同次幂,②具有对称性,③等号成立时的瞬时相等性.若将这组不等式联用、迭用或逆用,通过分析条件、研究结构、合理变形等手段,就能收到培养学生能力,开发学生智力,激活学生思维的效果.特别是它在解决一类有关最值、取值范围以及解证不等式等问题中解题效果尤为突出,现举例说明.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号