首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper develops a robust state-feedback controller for active suspension system with time-varying input delay and wheelbase preview information in the presence of the parameter uncertainties. By employing system augmentation technique, a multi-objective control optimization model is first established and then this controller design is converted to a static full-state feedback controller design with robust H and generalized H2 performance, wherein the model-dependent control gain is evaluated by transforming the related nonlinear matrix inequalities into their corresponding linear matrix inequality forms based on Lyapunov theory, and then LMI (Linear-Matrix-Inequality) technique is applied to solve and obtain the desired controller. A numerical simulation case is finally provided to reveal the effectiveness and advantages of the proposed controller.  相似文献   

2.
This paper develops a novel observer design method for multi-motor web-winding system. Firstly, the multi-motor web-winding system is regarded as a synthetic system with several subsystems, where the dynamic model for each subsystem is given. Then, the nonlinear diffeomorphism transformation is introduced to obtain a transformed system with block triangular structure and the interconnections among the subsystems are allowed. Next, a decentralized high-gain observer with sliding mode is designed for the transformed system, based on which the estimation error dynamics can be got. Sufficient condition of asymptotic stability for estimation error dynamics is derived by the Lyapunov stability theory and the observer gain is obtained. After that, the observer for original multi-motor web-winding system is achieved via inverse transformation. Finally, the simulation and analysis are performed in the three-motor web-winding system to verify the effectiveness of the proposed observer.  相似文献   

3.
The input-output finite-time filtering problem is addressed for a class of switched linear parameter-varying systems in this paper. Firstly, by constructing a parameter-dependent Lyapunov function and resorting to the average dwell time approach, sufficient conditions ensuring finite-time boundedness and input-output finite-time stability are established for the augmented filtering error system. Then, a parameter-dependent asynchronous filter is designed such that the augmented filtering error system are both finite-time bounded and input-output finite-time stable. Finally, the active magnetic bearing model is introduced and verifies the main algorithms in this paper.  相似文献   

4.
Accurate and effective state estimation is essential for nonlinear fractional system, since it can provide some vital operation information about the system. However, inevitably missing measurements and additive uncertainty in the gain will affect the performance of estimation result. Thus, in this paper, in order to deal with these problems, a novel robust extended fractional Kalman filter (REFKF) is developed for states estimation of nonlinear fractional system, by which the states can be estimated accurately even with missing measurements. Finally, simulation results are provided to demonstrate that the proposed method can achieve much better estimation performance than the conventional extended fractional Kalman filter (EFKF).  相似文献   

5.
This paper investigates adaptive practical finite-time stabilization for a class of switched nonlinear systems in pure-feedback form. Under some appropriate assumptions, a controller and adaptive laws are designed by using adding a power integrator technique, and neural networks are employed to approximate unknown nonlinear functions. It is proved that all states of the closed-loop system converge to a small neighborhood of the origin in finite time. Finally, two simulations are provided to show the feasibility and validity of the proposed control scheme.  相似文献   

6.
This paper has investigated the input-output finite time stability (IO-FTS) for a class of networked control systems (NCSs) with network-induced delay. To reduce the frequents of packets transmission, a novel memory event-triggered scheme (METS) has been proposed. Different from existing event-triggered schemes, the proposed METS can make use of certain released packets to generate new event. By this way, the event generator can do more precise decision and better control performance can be expected. By using a Lyapunov functional method, sufficient condition for the IO-FTS of NCSs has been derived. Then a co-design method is proposed to obtain the memory feedback gains and parameters of the METS. Finally, a simulation example is carried out and the effectiveness of the designed METS is validated. The IO-FTS of NCSs with solved memory feedback gains is also confirmed.  相似文献   

7.
In this paper, a command filter-based adaptive fuzzy controller is constructed for a class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a command filter-based control strategy is presented to make that the tracking error converge to an any small neighborhood of zero and all closed-loop signals are bounded. In the design procedure, fuzzy logic system is employed to estimate unknown package nonlinear functions, which avoids excessive and burdensome computations. The control scheme not only resolves the explosion of complexity problem but also eliminates the filtering error in finite-time. An example has evaluated the validity of the control method.  相似文献   

8.
This paper is concerned with the problem of global finite-time stabilization via output feedback for a class of switched stochastic nonlinear systems whose powers are dependent of the switching signal. The drift and diffusion terms satisfy the lower-triangular homogeneous growth condition. Based on adding a power integrator technique and the homogeneous domination idea, output-feedback controllers of all subsystems are constructed to achieve finite-time stability in probability of the closed-loop system. Distinct from the existing results on switched stochastic nonlinear systems, the delicate change of coordinates are introduced for dominating nonlinearities. Moreover, by incorporating a multiplicative design parameter into the coordinate transformations, the obtained control method can be extended to switched stochastic nonlinear systems with nonlinearities satisfying the upper-triangular homogeneous growth condition. The validity of the proposed control methods is demonstrated through two examples.  相似文献   

9.
This paper is devoted to the adaptive finite-time control for a class of stochastic nonlinear systems driven by the noise of covariance. The traditional growth conditions assumed on the drift and diffusion terms are removed through a technical lemma, and the negative effect generated by unknown covariance noise is compensated by combining adaptive control technique with backstepping recursive design. Then, without imposing any growth assumptions, a smooth adaptive state-feedback controller is skillfully designed and analyzed with the help of the adding a power integrator method and stochastic backstepping technique. Distinctive from the global stability in probability or asymptotic stability in probability obtained in related work, the proposed design algorithm can guarantee the solution of the closed-loop system to be finite-time stable in probability. Finally, a stochastic simple pendulum system is skillfully constructed to demonstrate the effectiveness of the proposed control scheme.  相似文献   

10.
A continuous multivariable uniform finite-time output feedback reentry attitude control scheme is developed for Reusable Launch Vehicle (RLV) with both matched and mismatched disturbances. A novel finite-time controller is derived using the bi-limit homogeneous technique, which ensures that the attitude tracking can be achieved in a uniformly bounded convergence time from any initial states. A multivariable uniform finite-time observer is designed based on an arbitrary order robust sliding mode differentiator to estimate the unknown states and the external disturbances, simultaneously. Then, an output feedback control scheme is established through the combination of the developed controller and the observer. A rigorous proof of the uniform finite-time stability of the closed-loop system is presented using Lyapunov and homogeneous techniques. Finally, numerical simulation is provided to demonstrate the efficiency of the proposed scheme.  相似文献   

11.
This paper aims to solve the finite time consensus control problem for spacecraft formation flying (SFF) while accounting for multiple time varying communication delays and changing topologies among SFF members. First, in the presence of model uncertainties and external disturbances, the coupled dynamics of relative position and attitude are derived based on the Lie group SE(3), in which the position and attitude tracking errors with respect to the virtual leader whose trajectory is computed offline are described by exponential coordinates. Then, a nonsingular fast terminal sliding mode (NFTSM) constructed by the exponential coordinates and velocity tracking errors is developed, based on which adaptive fuzzy NFTSM control schemes are proposed to guarantee that the ideal configurations of the SFF members with respect to the virtual leader can be achieved in finite time with high accuracy and all the aforementioned drawbacks can be overcome. The convergence and stability of the closed-loop system are proved theoretically by Lyapunov methods. Finally, numerical simulations are presented to validate the effectiveness and feasibility of the proposed controllers.  相似文献   

12.
In this paper, the finite-time exponential consensus problem is addressed for a class of multi-agent systems against some disturbed factors, which include system uncertainties, communication perturbations, and actuator faults. All disturbed factors are supposed to be influenced by internal and external effects of systems. The internal effects are described in terms of dependency on the system states, while the external actions are restricted by constant bounds. To obtain the information of the rate of dependency on the states and constant bounds, an adaptive mechanism is designed to estimate the rate and bounds. Based on these estimates, a distributed adaptive sliding mode controller is constructed to eliminate the effects of those disturbed factors. Then exponential consensus of the closed-loop adaptive multi-agent system is achieved within a finite time based on Lyapunov stability theory. The efficiency of the developed adaptive consensus control strategy is verified by a coupled system with four F-18 aircrafts of decoupled longitudinal model.  相似文献   

13.
In this paper, the issues of finite-time extended dissipative analysis and non-fragile control are investigated for a class of uncertain discrete time switched linear systems. Based on average dwell-time approach, sufficient conditions for the finite-time boundedness and finite-time extended dissipative performance of the considered systems are proposed by solving some linear matrix inequalities, where using the concept of extended dissipative, we can solve the H, L2?L, Passivity and (Q, S, R)-dissipativity performance in a unified framework. Furthermore, two form of non-fragile state feedback controllers are designed to guarantee that the closed-loop systems satisfy the finite-time extended dissipative performance. Finally, simulation example is given to show the efficiency of the proposed methods.  相似文献   

14.
It is well known that a fractional-order system with a continuous right hand side does not have finite-time stable equilibria, but the discontinuous case has remained elusive in literature. Thus, based on novel mathematical tools, recently published in literature, it is demonstrated that attaining finite-time stable equilibria is not possible for a fractional-order system, not even in the case of an impulsive or discontinuous feedback. In consequence, it is demonstrated that, for a fractional-order system, a Lyapunov stable equilibrium cannot be at the same time finite-time stable.  相似文献   

15.
This paper investigates adaptive finite-time practical consensus protocols for a class of second-order multiagent systems with a positive odd power, nonsymmetric input dead zone and uncertain dynamics under a directed communication topology. In this study, three major steps are employed to address the existence of the positive odd power, nonsymmetric input dead zone and uncertain dynamics. Overall, based on the technique of adding one power integrator, useful preliminary results are obtained by configuring a suitable fraction power. Furthermore, to circumvent input dead-zone nonlinearity, an adaptive fuzzy logic (FL) method is used to estimate the width of the dead zone. Finally, the difficulty in designing finite-time practical consensus protocols for the multiagent systems with uncertain dynamics is handled by using radial basis function neural networks (RBFNNs) to approximate the related unknown nonlinear functions. Then, given some reasonable assumptions, it is shown that finite-time practical consensus of the second-order multiagent systems is obtained by using the proposed distributed control protocols and adaptive laws. In addition, the proper approach for selecting parameters is provided such that the neighborhood position error and parameter estimate errors for each agent converge to predesigned small regions of the origin in a finite time. The effectiveness of the developed algorithm is finally validated through a numerical simulation.  相似文献   

16.
This paper presents a robust multivariable predictive control for laser-aided powder deposition (LAPD) processes in additive manufacturing. First, a novel control-oriented MIMO process model is derived. Then, the objective of achieving desired geometrical and thermal properties is formulated as one of generating and tracking nominal reference profiles of layer height and melting pool temperature. This is accomplished via a nonlinear model predictive control with guaranteed nominal stability. Furthermore, a local ancillary feedback law is derived to provide robustness to bounded uncertainties. The paper verifies the effectiveness of the proposed control via a case study on a laser cladding process.  相似文献   

17.
In this paper, a robust self-triggered model predictive control (MPC) scheme is proposed for linear discrete-time systems subject to additive disturbances, state and control constraints. To reduce the amount of computation on controller sides, MPC optimization problems are only solved at certain sampling instants which are determined by a novel self-triggering mechanism. The main idea of the self-triggering mechanism is to choose inter-sampling times by guaranteeing a fast decrease in optimal costs. It implies a fast convergence of system states to a compact set where it is ultimately bounded and a reduction of computation times to stabilize the system. Once the state enters a terminal region, the system can be stabilized to a robust invariant set by a state feedback controller. Robust constraint satisfaction is ensured by utilizing the worst-case set-valued predictions of future states in such a way that recursive feasibility is guaranteed for all possible realisations of disturbances. In the case where a priority is given to reducing communication costs rather than improvement in control performance in a neighborhood of the origin, a feedback control law based on nominal state predictions is designed in the terminal region to avoid frequent feedback. Performances of the closed-loop system are demonstrated by a simulation example.  相似文献   

18.
19.
Monitoring problem in population ecology can be formalized as observer design for the population system in question: Supposing that we observe only certain species considered indicators, we want to recover or estimate the whole state process of the population system, where the state vector is usually composed from the biomasses of the single populations. In the present paper, for stably coexisting population systems, a new approach to the design of the corresponding observer system is proposed which, from the knowledge of the observed indicator(s), estimates the state process with exponential convergence. In the usual observer design, an auxiliary matrix, the so-called gain matrix must be found that guarantees the mentioned exponential convergence. The novelty is in that due to the required sign-stability (or qualitative stability) of the interaction pattern, the designed observer system (i.e. the gain matrix) is robust against quantitative changes in the inter- and intra-specific interactions. (Here the interaction pattern is described by a matrix having the signs as entries, indicating the quality of the interactions within and between the considered species.) In other words, under sign-stability conditions, in the observer design the same gain matrix can be used even if, due to environmental changes, the intensities of certain interactions suffer a quantitative change in the meanwhile. The requirement of sign-stability of the interaction pattern can be considered rather natural, since in a stably coexisting population system, it means for example that a predator–prey relation does not change into a prey–predator interaction, and interactions neither appear nor disappear within the system. Our approach to robust observer design is illustrated on model population systems, such as trophic chains of type resource-producer-primary consumer-secondary consumer and Lotka–Volterra system with vertical structure. For the latter system a Lyapunov function is also constructed that guarantees the global asymptotic stability of the positive equilibrium of the considered model.  相似文献   

20.
This paper considers the distributed tracking control problem for linear multi-agent systems with disturbances and a leader whose control input is nonzero and not available to any follower. Based on the relative output measurements of neighboring agents, a novel distributed observer-based tracking protocol is proposed, where the distributed intermediate estimators are constructed to estimate the leader’s unknown control input and the states of the tracking error system simultaneously, then a distributed tracking protocol is designed based on the derived estimates. It is proved that the states of the tracking error system are uniformly ultimately bounded and an explicit tracking error bound is obtained. A simulation example of aircrafts verifies the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号