首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
向量及其运算是高中教材的新增内容 ,它融数、形于一体 ,具有代数形式和几何形式的“双重身份” ,使它成为中学数学知识的一个交汇点 ,成为联系多项内容的媒介 .下面举例说明向量与三角函数、解析几何、立体几何的交汇 .一、向量与三角函数的交汇例 1 已知 ,a=cos32 x ,sin32 x ,b=cos x2 ,-sin x2 且x∈ 0 ,π2 .( 1)求a·b及 |a +b| ;( 2 )求函数 f(x) =a·b -4 |a +b|的最小值 .解  ( 1)按向量运算的意义 ,有a·b=cos32 xcosx2 +sin 32 x · -sin x2=cos 32 x +x2=cos 2x .a+b =cos32 x+cos x2 ,sin32 x-sin x2 ,|a +b| =cos32 …  相似文献   

2.
当今高考数学命题注重知识的整体性和综合性,重视知识的交汇性,向量是新课程新增内容,具有代数与几何形的双重身份·它是新旧知识的一个重要的交汇点,向量与三角的交汇是当今高考命题的一个热点·一、向量与三角函数性质的沟通向量的坐标形式中,我们可以用三角函数来表示,这是向量和三角沟通的一个渠道,此时通过向量的数量积和模我们可以构造三角函数,从而解决三角函数的性质·例1已知向量→a=(cos32x,sin32x),→b=(cos2x,-sin2x),且x∈[0,π2],求:①→a·→b及|→a →b|;②若f(x)=→a·→b-2λ|→a →b|的最小值是-23,求λ的值·分析:①→a…  相似文献   

3.
对于某些三角问题 ,若能合理地构造向量 ,利用向量来解 ,往往可使问题得到快捷方便地解决 ,下面举例说明 .一、求角度【例 1】 若α、β∈ ( 0 ,2 ) ,求满足cosα+cosβ-cos(α + β) =32 的α ,β的值 .解 :原等式化为( 1 -cosβ)cosα+sinβsinα =32 -cosβ ①构造向量a =( 1 -cosβ ,sinβ) ,b =(cosα ,sinα) ,则a·b =( 1 -cosβ)cosα+sinβsinα=32 -cosβ ,|a|·|b|= ( 1 -cosβ) 2 +sin2 β· cos2 α+sin2 α= 2 -2cosβ因 (a·b) 2 ≤|a|2 ·|b|2 ,于是有 ( 32 -cosβ) 2 ≤ 2 -2cosβ整理得 (cosβ-12 ) 2 ≤ 0 ,∴c…  相似文献   

4.
向量作为一种工具在解题中的应用极广,巧用公式a·b≤a·b解题,方法新颖、运算简捷.本文举例说明该公式的应用.1在求值中的应用例1若α,β∈(0,π),求满足等式cosα+cosβ-cos(α+β)=23的α,β的值.解原等式可化为(1-cosβ)cosα+sinβsinα=32-cosβ.构造向量a=(1-cosβ,sinβ),b=(cosα,sinα),则a·b=(1-cosβ)2+sin2β·cos2α+sin2α=2-2cosβ,a·b=(1-cosβ)cosα+sinβsinα=32-cosβ.因为(a·b)2≤a2b2,所以(23-cosβ)2≤2-2cosβ,即(cosβ-12)2≤0,所以cosβ=21,β=3π.又α,β地位相同,故α=3π,即α=β=3π.2在求最值和值域中的…  相似文献   

5.
已知α、β∈(0,2π),a=(2,sinα),b=(3,sinβ),c=(3,2),d=(cosα,cosβ),a∥b,c·d=3,求2α β的值.这道试题见诸于很多省、市高考模拟卷中,在网上流行盛广.1.基本解法本题主要考查平面向量的运算法则、三角函数公式及恒等变形能力,考查运用向量及三角函数知识综合解题的能力.  相似文献   

6.
例已知a=(1,2),b=(1,1),且a与a+λb的夹角为锐角,求实数λ的取值范围.错解:设a与a+λb的夹角为θ.则a·(a+λb)=|a||a+λb|cosθ.由 a+λb=(1+λ,2+λ),知a与a+λb均不是零向量,且θ为锐角,所以a· (a+λb)>0,即a·(a+λb)=1×(1+λ)+2×(2+λ)=5+3λ>0,解得λ>-5/3.因此所求实数λ的取值范围是(?) 剖析:上述解法看上去似乎合情合理,实际上是错误的,不妨取λ=  相似文献   

7.
向量的主要性质①向量的加法适合向量加法的三角形法则或平行四边形法则,即AB+BC=AC; ②若e1、e2是平面α内非零不共线向量,则对于α内任一向量a,有且只有一对实数λ1λ2,使得a=λ1 e1+λ2 e2成立; ③非零向量a=(x1,y1),b=(x2,y2)的数量积为a·b=x1x2+y1y2; ④设非零向量a=(x1,y1),b=(x2,y2),则a⊥b(?)a·b=x1x2+y1y2=0;  相似文献   

8.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

9.
不等式证明既是高中数学的重点,也是高中数学的难点。化归函数法、放缩法是技巧性较高的不等式证明方法.一、化归函数法例1、已知a,b,c,d∈R,且a2+b2=1,c2+d2=1求证:-14FabcdF41分析:将已条件与sin2α+cos2α=1进行对照,可知本题能通过换元将原不等式问题转化为三角函数求值域的问题来解决.证明:设a=sinα,b=cosα,c=sinβ,d=cosβ]|abcd|=|sinα·cosα·sinβ·cosβ|=14|sin2α·sin2β|F14|sin2α|·|sin2β|F41]-14FabcdF41例2、求证:|a|+|b|1+|a|+|b|E1+|a|+a+b|b|分析:认真观察原不等式两边,不难发现它们…  相似文献   

10.
向量的性质常见于教材的例、习题中 ,但其应用是教材的薄弱内容 .同学们学习时应掌握下面性质的应用 ,以加深对向量知识的理解和掌握 .1若 e1、e2 是平面α内非零不共线向量 ,则对于α内任一向量 a,有且只有一对实数λ1,λ2 ,使得 a=λ1e1+λ2 e2 成立 ;2非零向量 a =( x1,y1) ,b =( x2 ,y2 )的数量积为a .b =x1x2 +y1y2 ;3设向量 a =( x1,y1) ,b =( x2 ,y2 ) ,b≠ 0 ,则 a∥b x1y2 - x2 y1=0 ;4设非零向量 a =( x1,y1) ,b =( x2 ,y2 ) ,则 a⊥b x1x2 +y1y2 =0 ;5非零向量 a =( x1,y1) ,b =( x2 ,y2 )的夹角θ满足 cosθ =cos〈a,b〉 =a .b|…  相似文献   

11.
一、考查平面向量的基本概念和运算律例1设a、b、c是任意的非零平面向量,且互不共线,给出下列四个命题:①(a·b)c-(c·a)b=0;②|a|-|b|<|a-b|;③(b·c)a-(c·a)b不与c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中真命题有()A.①②B.②③C.③④D.②④解析①∵a、b、c互不共线,∴(a·b)c与(c·a)b分别与c、b共线,而c与b不共线,∴(a·b)c≠(c·a)b,故(a·b)c-(c·a)b=0不成立.②∵a、b、c互不共线,∴a、b、a-b可以构成三角形,∴|a|-|b|<|a-b|.③∵犤(b·c)a-(c·a)b犦·c=(b·c)a·c-(c·a)b·c=(b·c)(a·c)-(c·a)(b·c)=0,…  相似文献   

12.
新课程教材中增加了向量的内容,其中两个向量的数量积有一个性质:a·b=|a·b|cos(其中为向量a与b的夹角),则|a·b|=||a·||b|cos|,又-1≤cos≤1,则可得不等关系式:①a·b≤|a·||b|;②|a·b|≤|a·||b|;③|a·b|2≤|a|·2|b|2.而利用这些不等关系式,可使证明某些不等式,绕过魔幻般的配凑技巧,而得以简证.利用以上不等关系式证明,关键是构造恰当的向量,主要有两种方式,下面加以介绍.一、直接构造直接构造是指直接构造a·b或|a·b|或|a·b|2为不等式的一边,再利用不等关系式a·b≤|a·||b|等即可解决.例1已…  相似文献   

13.
第1点运算定义型()必做1定义平面向量的一种运算:ab=|a|·|b| sin〈a,b〉,则下列命题:1ab=ba;2λ(ab)=(λa)b;3(a+b)c=(ac)+(bc);4若a=(x1,y1),b=(x2,y2),则ab=|x1y2-x2y1|.  相似文献   

14.
一、选择题1.下列关系正确的是()A.A =-B B.a·b仍是一个向量C.A -A =C D.|a·b|=|a|·|b|2.若向量a、b反向,则下列等式成立的是()A.|a|-|b|=|a-b|B.|a+b|=|a-b|C.|a|+|b|=|a-b|D.|a|+|b|=|a+b|3.平面上有三个点C(2,2),M(1,3),N(7,k),若∠MCN=90°,则k的值为()A.6B.7C.8D.94.下列各组中的两个向量,其中共线的一组是()A.a=(-2,3),b=(4,6)B.a=(2,3),b=(3,2)C.a=(1,-2),b=(7,14)D.a=(-3,2),b=(6,-4)5.若|a|=3,|b|=4,(a+b)(a+3b)=33,则a与b的夹角为()A.30°B.60°C.120°D.150°6.…  相似文献   

15.
三角中的一类题目,若巧用比和比例将显得较为简捷,请看下面几例: [例1] 已知(cosx)/a=(cos3x)/b(cosx≠0,) 求证:(a-b)/(3a b)=tg~2x 证:设(cosx)/a=(cos3x)/b=1/k 则a=kcosx,b=kcos3x ∴(a-b)/(3a b)=(kcosx-kcos3x)/(3kcosx kcos3x) =(2sin2x·sinx)/(4cos~3x)=(4sin~2x·cosx)/(4cos~2x)=tg~2x [例2] △ABC中,求证:cosA cosB cosC>1 证:由射影定理得, a=bcosC cdosB,b=ccosA acosC 两式相加得:a b=(a b)cosC c(cosA cosB)。∴ (a b)(1-cosC)=c(cosA cosB)  相似文献   

16.
一、a·b=|a||b|cosθ中的cosθ与S=12|a||b|sinθ中的sinθ是建立起数量积与面积关系的桥梁.【例1】设i,j是平面直角坐标系内x轴,y轴正方向上的单位向量,且AB=4i 2j,AC=3i 4j,则△ABC的面积等于()(A)15(B)10(C)7.5(D)5分析:①由题意可知:AB=(4,2),AC=(3,4),所以|AB|=25,|AC|=5,AB·AC=4×3 2×4=20②由S△ABC=12|AB||AC|sin∠BAC,故知必须先求sin∠BAC.由AB·AC=|AB||AC|cos∠BAC,可得cos∠BAC=25从而由sin2∠BAC cos2∠BAC=1可求出∠BAC=55,S△ABC=5,故选D.二、利用a⊥bZx1x2 y1y2=0来实…  相似文献   

17.
高等数学初等化问题,已成为高考数学试题发展的新趋势,它给师生带来了新的思维挑战.本文就这方面问题作如下归纳:计算条件初等化例1:若两个向量a!,b"的夹角为θ,则称向量“a!×b"”为“向量积”,其长度|a!×b"|=|a!|·|b"|·sinθ.今已知|a!|=1,|b"|=5,|a!×b"|=|a!|·|b"|·sinθ=3,则a!·b"=_____.解:由“向量积”的定义可知|a!×b"|=|a!|·|b|·sinθ=3,带入条件有sinθ=53,且θ∈[0,π],所以cosθ=±54.所以a!·b"=|a!|·|b"|·cosθ=±4.例2:若定义运算ca bd=ad-bc,则符合条件1-1Z Zi=4+2i的复数Z为().A.3…  相似文献   

18.
本文给出一类三角函数的最值问题及其解答,并利用其结论给出若干三角方程的解集. 问题1 已知x∈R,n ∈ N,且n≥1,求f(x)=sin2n+1x+cos2n+1x的最大值与最小值,并求当x取何值时f(x)分别取得最大、最小值. 解 设a=sinx,b=cosx,则可将问题转化为:已知a,b∈R,且a2+ b2=1,求P=a2n+1+ b2n+1(其中n∈N+)的最大、最小值.  相似文献   

19.
一、作差比较法例1求证:2+sin2x≥2(sinx+cosx).证明∵左边-右边=2(1-sinx)-2cosx(1-sinx)=2(1-sinx)(1-cosx)≥0,∴原不等式成立.二、判别式法例2已知函数:y=sec2x-tanxsec2x+tanx,求证:13≤y≤3.证明∵y=sec2x-tanxsec2x+tanx=1+tan2x-tanx1+tan2x+tanx,∴(y-1)tan2x+(y+1)tanx+(y-1)=0.当y=1时,tanx=0;当y≠1时,tanxR.∴Δ=(y+1)2-4(y-1)2≥0,∴13≤y≤3.三、分析综合法例3已知01.证明∵cosx>0,cosy>0,要证原不等式成立,只须证cos2x+y2>cosxcosy,只须证1+cos(x+y)2>cosxcosy,只须证1+cos(x+y)-2cosxco…  相似文献   

20.
正确理解和运用平面向量的数量积有助 于利用向量这一强有力的数学利器。笔者以 下着重谈一谈学习平面向量的数量积时需要 注意的几个问题,提醒同学们在学习中加以 注意. 提示1.注意区别向量的数量积a·b与 实数乘法a·b 向量的数量积a·b与实数乘法a·b有 许多不同之处,而要正确区分它们,关键是以 公式a·b=|a|·|b|cosθ为依据…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号