首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
一、辨别一元二次方程例 1 方程x4+ax3-x2 +a2 -1 =0是否是一元二次方程 ?如果是 ,指出各项系数 ;如果不是说明理由 .解 当x为常数时 ,此方程是关于a的一元二次方程 ,化为一般形式是a2 +x3a+x4-x2 -1 =0 ,其中二次项系数为 1 ,一次项系数为x3,常数项为x4-x2 -1 .二、判别根的情形例 2 判别关于x的方程k2 x2 -( 2k+1 )x+1 =0的根的情况 .解 当k =0时 ,方程变为 -x +1 =0 ,原方程只有一个实数根 1 ;当k≠ 0时 ,∵Δ =[-( 2k+1 ) ]2 -4k2=4k+1 .∴当k>-14 ,且k≠ 0时 ,原方程有两个不相等的实数根 ;当k=14 时 ,原方程有两个相等的实数根 ;…  相似文献   

2.
一◆一、概念题1.一元二次方程(m-1)x2-3x-2=0 ,其中二次项为,二次项系数为,一次项为_______,一次项系数为,常数项为.(我们首先要做的事情是确定m-1≠0,即m≠1)2.关于x的方程mx2 - nx - mx + nx2 = p,(m+n≠0)可整理为,则二次项为,一次项为,常数项为.而二次项系数为,一次项系数为.3.AB=0圳A = 0或B = 0.请用语言表达其含义:.4.不解方程,判断下列方程实根的个数①x(x-1)+3=0,②x2 - 22姨x+2=0,③23x2- 6=2x.5.一元二次方程2x2 - 3x + 4 = 0,两个根分x1x2 = .◆二、基础题6.用4种不同的方法解方程(x - 2)2 - 4(x +7.…  相似文献   

3.
一元二次方程是初中代数的重要内容,然而很多同学由于受思维定势的影响,往往会忽视含有字母系数的一元二次方程中的隐含条件,致使解答陷入误区.具体表现主要有以下几方面:一、忽视二次项系数a≠0导致字母系数取值范围扩大例1已知关于x的一元二次方程(a2-1)x2+2(a+2)x+1=0有实根,求a的取值范围.错解:因为方程有实根,所以Δ≥0,即4(a+2)2-4(a2-1)≥0,解得a≥-45.剖析:由一元二次方程的定义知:a2-1≠0·而上述解题过程恰恰忽略了这一点,正确解法应为:依题意得:a2-1≠0Δ=4(a+2)2-4(a2-1)≥0解得a≥-54且a≠±1.(注:例1等价于:已知关于x的方程(a…  相似文献   

4.
一元二次方程是初中代数的重难点之一 ,解答与其有关的问题时非常容易出现忽视题中的限制条件而错解或漏解。下面就学习中经常出现的几种错误举例如下 :望能引起同学们重视。一、忽视二次项系数a≠ 0而错解例 1 已知关于x的方程 (m - 2 )x2 +(2m - 1 )x +m =0有两个实数根 ,求m的取值范围。错解 :由题意得 :(2m - 1 ) 2 - 4(m - 2 )m≥ 0解得 :m≥ - 14剖析 :因为方程“有两个实数根” ,故该方程为一元二次方程 ,应强调二次项系数a≠ 0 ,即m - 2≠ 0。其正确答案是m≥ - 14 且m≠ 2。二、忽视根的判别式△≥ 0而错解例 2 已知x1,x2 是关于…  相似文献   

5.
利用一元二次方程的求根公式,可以证明:方程x~2+bx+ac=0的两根分别是方程ax~2+bx+c=0两根的a倍(a≠0)。运用这个结论,可以很快解决求作一个一元二次方程且使它的根分别是已知方程的各根的几倍问题。例1求作一个一元二次方程,使它的两根分别是方程3x~2-16x+5=0的两根的3倍。解:因为方程x~2+bx+ac=0的两根分别是方程ax~2+bx+c=0的两根的a倍,所以,所求作的一元二次方程是x~2-16x+3×5=0,即x~2-16x+15=0.如果已知方程的二次项系数刚好等于所求方程的的根是已知方程各根的倍数,那么,就用已知方程二次项系数移乘常数项,二次项系数改为1,一次项不  相似文献   

6.
一元二次方程根的判别式和根与系数的关系是初中数学的重点内容.解含有字母系数的一元二次方程时,常常会因对字母系数考虑不周,或对判别式运用不当而产生错误.例1求证:关于方程mx2-(m+2)x+1=0有实数根.错解:当m≠0时,Δ=[-(m+2)]2-4m=m2+4,∵m2≥0,∴m2+4>0.即原方程有两个不相等的实数根.分析:含有字母系数的方程不一定是一元二次方程,所以二次项系数也可能等于0,即应对二次项系数进行分类讨论.应补充:当m=0时,原方程变为-2x+1=0,此方程只有一个实数根x=12.例2关于x的方程mx2-(2m+1)x+m=0,有两个不相等的实数根,求m的取值范围.错解:根据题…  相似文献   

7.
一、对一元二次方程概念的理解产生错误.例1.在下列方程中:(1)x2=4;(2)x2-1x=1;(3)5x23-2x=4x;(4)4x2 y2 1=0,是一元二次方程的是(.只填序号)错解:(1)(2)(3)错解分析:错解的原因没有弄清一元二次方程必须是整式方程,方程(2)是关于x的分式方程,故不是一元二次方程,只有(1)(3)是一元二次方程.正确解法:(1)(3)二、对一元二次方程中系数的确定产生符号的错误.例2.求一元二次方程3x2-2x=3的二次项系数、一次项系数和常数项.错解:二次项系数3,一次项系数2,常数项为3.错解分析:一般情况下,在判断一元二次方程的系数时,要先把方程化成一般形式,然后…  相似文献   

8.
一元二次方程ax2 +bx+c=0(a≠θ)的系数和a+b+c=0,则x=1满足方程x2+bx+c=0,即x=1是该方程的一个根.反过来,x=1是一元二次方程ax2+bx+c=0(a≠0)的一个根,则ab+c=0. 运用这个结论可解决不少的问题.请看: 例1 解方程:4x2-5x+ 1=0. 分析与解:因为4+(-5)+1=0,所以x1=1是方程的一个根.设另一根为x2,由根与系数的关系,得1×x2=1/4,即x2=1/4,所以方程的解是x1=1,xx=1/4. 温馨小提示:已知一元二次方程的一个根,运用根与系数的关系可简捷地求出另一个根.  相似文献   

9.
在讨论解决一元二次方程 ax2 bx c=0实根问题时 ,初学这方面内容的同学们常出现各类错误 ,集中反映在忽略了方程 ax2 bx c=0的 a和 ,主要有如下四种情况 :一、方程有两个实根时 ,忽略 a≠ 0例 1 已知关于 x的一元二次方程 (1 - 2 k) x2- 2 k 1 x- 1 =0有两个不相等的实数根 ,求 k的取值范围。(2 0 0 0年广西壮族自治区中考题 )错解 :由 =(- 2 k 1 ) 2 - 4 (1 - 2 k) (- 1 )= - 4 k 8>0 ,得 k<2 ,∴当 k<2时 ,原方程有两个不相等的实数根。分析 :错解忽略了有两个实数根就说明这方程是一元二次方程 ,故应有二次项系数 1 - 2 k≠ 0 ,k≠1…  相似文献   

10.
《代数》第三册第85页写道:任何一个关于 x 的一元二次方程,经过整理,都可以化成 ax~2+bx+c=0(a≠0)的形式.……二次项系数 a 是不等于零的实数.因为如果 a 等于零,那么这样的方程就不是二次方程了.对于与二次项系数含有字母的方程有关的问题,辨认它是不是二次方程,至关重要.课本上对于一元二次方程的描述.大致有下面几种类型:  相似文献   

11.
一元二次方程是初中数学的主要内容之一,是中考的一个必考内容.同学们在解题时,由于考虑问题不全面,思维不严谨,常会出现这样或那样的错误.现举例分析,供参考. 一、忽视一元二次方程中二次项系数a≠0造成错误例1 (2001年济南市)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2,求k的取值范围. 错解:∵方程有两个不相等的实数根, ∴原方程为一元二次方程且△>0, 即(2k-1)2-4k2>0,  相似文献   

12.
设方程 ax~2+bx+c=0(a≠0)的两根为 x_1,x_2,那么 x_1+x_2=-(b/a),x_1·x_2=(c/a).这就是一元二次方程根与系数的关系.由根与系数的关系,我们知道:以两个数 x_1,x_2为根的一元二次方程(二次项系数为1)是x~2-(x_1+x_2)x+x_1·x_2=0.根与系数的关系使我们能够由方程来讨论根的性质;反之,则可以由根的性质来确定方程的系数.因而,根与系数的关系的应用相当广泛.我  相似文献   

13.
一元二次方程是中考命题的“重头戏”,近年来 ,围绕着“重在基础 ,突出能力 ,尝试创新”,中考试题中一元二次方程新题型精彩纷呈。一、设计有隐含条件的一元二次方程问题解决此类问题要注意 :1.用判别式时不可忽视二次项系数不为零这个隐含条件 ;2 .用韦达定理时不可忽视二次项系数不为零这一隐含条件 (a≠ 0 )和二次方程有实数根这一隐含条件 (△≥ 0 )。例 1.已知 x1、x2 是关于 x的方程 (m - 1) 2 x2 - (2 m - 5 ) x+ 1=0的两个实数根。(1)若 p=1x1+ 1x2,求 p的取值范围 ;(2 )问 x1、x2 能否同为正数 ?若能同为正数 ,求出相应的取值范围 …  相似文献   

14.
一元二次方程是中学数学的重要内容 ,因此 ,有关一元二次方程的问题一直受到各级各类竞赛的青睐 .本文通过一些不同形式的例题 ,介绍解答一元二次方程公共根问题的基本策略 .1 消去二次项例 1 若两个方程 x2 +ax+b=0和 x2+bx+a=0只有一个公共根 ,则 (  ) .(A) a=b     (B) a+b=0(C) a+b=1(D) a+b=- 1(2 0 0 2年江苏省初中数学竞赛题 )解 设两方程的公共根为 x0 ,则x20 +ax0 +b=0 ,x20 +bx0 +a=0 .121- 2 ,得 (a- b) (x0 - 1) =0 .∵两方程只有一个公共根 ,∴ a≠ b.从而x0 =1为两方程的公共根 ,代入 1,得 1+a+b= 0 ,即 a+b=- 1,选…  相似文献   

15.
对于一元二次方程的问题,命题者常会设计一些陷阱,使同学们在解题时出现增解的情况,导致解题错误。常见的陷阱如下: [陷阱一]忽视“一元二次方程ax2 bx c=0二次项系数a≠0”的条件例1 (2003年黑龙江省中考题)关于x的方程  相似文献   

16.
一元二次方程是初中数学学习的重点.本文给出一元二次方程的两个性质,并举例说明其应用,供同学们学习参考.一、性质性质1:在一元二次方程ax2+bx+c=0 (a≠0)中,若a+b+c=0,则x1=1,x2=ca. 证明:由a+b+c=0,得b=-a-c.将其代入原方程,得ax2+(-a-c)x+c=0,即(x-1)(ax-c)=0.因此,x1=1,x2=ca. 下面是一个类似的性质:性质2:在一元二次方程ax2+bx+c=0 (a≠0)中,若b=a+c,则x1=-1,x2=-ca.(证明略)二、应用举例例1解下列方程:(1)8x2+15x-23=0;(2)5x2+11x+6=0. 解:(1)∵8+15-23=0,∴x1=1,x2=-238.(2)∵11=5+6,∴x1=-1,x2=-6…  相似文献   

17.
<正>一元二次方程和二次函数的一般形式ax2+bx+c=0和y=ax2+bx+c中,要求我们特别注意的是二次项系数a≠0.但不少同学在解决相关的问题时,常常会出现错用"a≠0"的情况,举例如下:例1函数y=(m-1)x2-3x+6的图象形状是.错解抛物线.  相似文献   

18.
x的一次方程与x的一元二次方程都是关于x的方程,区别只是x的一元二次方程多了一个隐含条件,如二次项系数不为零,然而这个不明显的条件,导致很多同学把关于x的方程的实根误认为是关于x的一元二次方程的实数根。为避免这种错误,特举几例加以说明。例1k为何值时,关于x的方程2(k+1)x2+4kx+2k-1=0有实数根?解:若方程2(k+1)x2+4kx+2k-1=0是一元二次方根,则k应满足:2(k+1)≠0△=(4k)2-4×2(k+1)·(2k-1)≥0kk≠≤1-1k≤1且k≠-1若方程2(k+1)x2+4kx+2k-1=0是一元一次方程,则有2(k+1)=0即k=-1·当k=-1时,原方程为-4x-3=0,方程有实数根x=-43,综合两种…  相似文献   

19.
一元二次方程是初中数学的重要内容.巧妙地构造一元二次方程,可以解决许多难度较大的问题.现以几道典型的竞赛题为例,介绍构造一元二次方程的常用方法.一、应用方程根的定义例1若ab≠1,且有5a2+2001a+9=0,9b2+2001b+5=0,则ba的值是().(A)95(B)59(C)-20501(D)-20901(2001年全国初中数学联赛试题)解:显然b≠0,由9b2+2001b+5=0,得5b1#$2+2001·1b+9=0.又5a2+2001·a+9=0,由ab≠1知a≠b1,所以a、1b是方程5x2+2001x+9=0的两个根.由根与系数的关系知a·b1=95,即ba=59,选(B).二、应用根的判别式例2已知41(b-c)2=(a-b)(c-a),且a≠0,则b+a c=.(1999…  相似文献   

20.
一元二次方程是初中代数学习重点中考热点.涉及到的内容多、结论多、解题思路多.学生做起作业来,因种种原因,往往出现各种各样的错误,现就常见错误举例剖析如下:1概念不清造成的错误例1下列方程中,肯定是一元二次方程的是()A.ax2+bx+c=0B.3x2-2x-1=mx2C.x+1x=1D.(a2+1)x2-2x-3=0剖析由一元二次方程的定义可知,只有同时满足三个条件(1)是整式方程;(2)含有一个未知数;(3)未知数的最高次数是2,这样的方程才是一元二次方程,不满足其中任何一个条件的方程都不是一元二次方程.A答案,缺条件a≠0;B答案,缺条件m≠3;C答案,该方程是分式方程而不是…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号