首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
柯西不等式为:(a1b1 a2b2 … anbn)2≤(a21 a22 … a2n)(b21 b22十… b2n).其中ai,bi∈R(i=1,2,…,n).当且仅当a1/b1=a2/b2=…=an/bn时取"=",(约定ai=0时,bi=0,i=1,2,…,n).对于许多不等式问题,若善于运用柯西不等式及其等价形式,则往往会使一些棘手的问题变得简单明了.关键是构造适合不等式的条件,并能根据问题探索其等价形式.  相似文献   

2.
归纳和总结出柯西不等式在中学数学竞赛中的各种应用  相似文献   

3.
在高中数学竞赛中,整数理论是一个重要的内容,整数具体而又简单,很多整数问题看起来十分明显,但要论证颇为困难,需要有一定的技巧和别具一格的解题方法.而整数的奇偶性有着非常明显而简单的性质和特点,是我们解决问题的一种重要分类方法.本文从四个不同的侧面来谈一谈它的应用.  相似文献   

4.
在数学竞赛中,有些问题乍看起来无从下手,但用构造不等式的方法可能巧妙获解.本文通过实例,介绍几种构造不等式的方法.一、利用正整数的意义例1(第三届“祖冲之杯”初中数学邀请赛题)求出所有这样的正整数a,使得关于x的二次方程ax2 2(2a-1)x 4(a-3)=0至少有一个整数根.分析本题根据正整数必大于等于1的基本概念构造不等式,即可确定x的可能取值,从而求出a.解将方程变形整理得a(x 2)2=2x 12,显然x≠-2,则a=2x 12(x 2)2.因为a为正整数,必有a≥1,所以2x 12(x 2)2≥1,于是解得-4≤x≤2,且x≠-2.这样x的可能值为-4,-3,-1,0,1,2.代入检验得a=1,3,6,…  相似文献   

5.
6.
宋运碧 《理科爱好者》2004,(22):71-71,76
在数学解题活动中,当常规的推理不能奏效时.更多地需要对问题的条件和结论进行观察、广泛联想,创造出沟通已知与未知之间的桥梁.即通过构造一定的数学模型,来打开解题的通道,这种解题方法称为构造法.历史上有许多的数学家曾用构造方法成功地解决过数学上的难题.如欧几里德在《几何原本》中证明“素数的个数是无限的”就是一个典型的范例.  相似文献   

7.
8.
9.
柯西不等式是证明不等式的重要工具,也是求解某些最值问题时常用的理论根据,尤其在数学竞赛中应用广泛.用柯西不等式及其变式处理问题的基本途径关键有两点:一是要抓住所求问题的结构特点;二是要掌握基本的数学思想方法,通过变形与转化,使所求问题与柯西不等式形成对接,从而达到简便快速解题的目的.  相似文献   

10.
先看下面的一个公式:设ai∈R,bi∈R+,i=1,2,…,n.则a21b1+a22b2+…+a2nbn≥(a1+a2+…+an)2b1+b2+…+bn.这个公式是由柯西不等式稍加变形后得到的,用它处理一类分式不等式问题十分方便.下面举例说明.例1已知a、b、c∈R+.求证:ab+c+bc+a+ca+b≥32.(第26届莫斯科数学奥林匹克)证明:ab+c+bc+a+ca+b=a2a(b+c)+b2b(c+a)+c2c(a+b)≥(a+b+c)22(ab+bc+ca)≥3(ab+bc+ca)2(ab+bc+ca)=32.例2设a、b、c∈R+,且abc=1.则1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.(第26届IMO)证明:1a3(b+c)+1b3(c+a)+1c3(a+b)=a2b2c2a3(b+c)+a2b2c2b3(c+a)+a2b2c2c3(a+b)=b2c2a(b+…  相似文献   

11.
代换法,即变量替换作为一种重要的数学思想方法被广泛地应用于数学竞赛试题的求解与证明之中.变量代换往往能简化题设信息,显化隐含条件,构架条件与结果的联系通道,对发  相似文献   

12.
薛党鹏 《中等数学》2000,(3):6-8,19
所谓估计法,就是先对数学问题的待求目标进行初步的估计和猜测,然后再根据题意进一步缩小范围,进而求出待求目标的数学思想方法。估计思想作为学习和研究数学的一种重要思想,在数学竞赛中有着广泛的应用。  相似文献   

13.
解初中数学竞赛题的成败,关键在于突破口的选择,准确捕捉题目的各种信息,合理选择解题的突破口,就能快速形成准确的解题思路。  相似文献   

14.
本文就2003年全国高中数学联赛的一道题,给出用导数求解的方法.  相似文献   

15.
一元二次方程是中学数学竞赛的一个重要内容,有些问题通过构造一元二次方程,继而借助我们已熟悉的方程知识及解题技巧,能使问题迅速获解.同时其特有的魅力和功效定会引起学生们的极大的兴趣.本人拟就如何构造一元二次方程解竞赛题,作一些探讨.  相似文献   

16.
17.
在解决某道数学题时,有时不可能或不需要着眼于问题的各个组成部分.而是放大我们考察问题的视角,把需要解决的问题置于一个整体的环境中,对其进行整体处理.  相似文献   

18.
袁伟忠 《数学教学》2006,(6):28-30,25
向量法是解决数学问题的一种重要方法,它在数学解题中尤其在解不等式问题中有广泛的运用,新教材中的向量数量积公式m·n=|m|·|n| cosθ(θ为m与n的夹角)蕴含着重要的不等式关系:m·n≤|m|·|n|(当且仅当m、  相似文献   

19.
不等式问题是高中数学的重点内容,在近年高考试题中解不等式占有一定比例,尤其是含参数不等式解法及参数范围的求法更是重中之重。在涉及解不等式问题中,要重点加强含参数的不等式、绝对值不等式以及不等式在实际中的应用三大内容的理解与掌握,真正提高逻辑推理能力、运算能力以及运用相关知识和方法分析解决问题的能力,因此不等式的复习应突出对数学思想方法的复习,尤其是分类讨论思想、函数与方程思想、化归思想、数形结合思想、整体思想、构造思想等,要加强对逻辑推理能力和分析解决问题能力的培养。  相似文献   

20.
众所周知,sinx≤x≤tanx,x∈[O,2/π](^*),当且仅当x=0时等号成立。证明(^*)很容易,在此略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号