首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
勾股定理现了数学的数形结合思想,本文就勾股定理介绍了五种灵活应用勾股定理巧妙解答的题型。  相似文献   

2.
拜读了《小学教学研究》2003年9期《既然是“任意”何不当“特殊”》一文,颇受启发。文中所例举的4道习题,有助于开阔解题思路,更能使学生体会到“任意”中蕴含着“特殊”,从而可以借助于特殊来解一般情形的问题。  相似文献   

3.
勾股定理及其逆定理在初中数学中占有十分重要的地位,它是几何和代数的联系纽带之一,在以后学习到的几何计算及几何证明中。常要利用勾股定理列出方程或方程组来解决问题,本文着重对有关的解题技巧作一些阐述,供读者参考。  相似文献   

4.
近年来各地的中考试题中,有一类问题,其中含有形式为平方和的代数式,在证题过程中也往往涉及到勾股定理.本文列举两例,以供参考.  相似文献   

5.
勾股定理提示了直角三角形三边之间的关系,其逆定理则是判定三角形是否为直角三角形的一种有效方法,怎样根据题目中的已知条件来选用这两个定理呢?本文根据题目中的不同条件介绍一些选择思路,愿同学们从中学到一些思考方法。  相似文献   

6.
如图1,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100 m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18 km/h,那么学校受影响的时间为多少秒?思路点拨:(1)要判断拖拉机的噪音是否影响学校A,实质上是看A到公路的距离是否小于100m,小于100 m则受影响,大于100 m则不受影响,故作垂线段AB并计算其长度.(2)要求出学校受影响的时间,实质是要求拖拉机对学校A的影响所行驶  相似文献   

7.
本刊1997年1·2月号合刊发表了5篇关于勾股定理的应用的文章.它们系统地论述了勾股定理在几何计算和几何证明中的应用,读后深受启发,受益匪浅.作为问题的深化与提高,本文着重论述勾股定理在代数解题中的应用.勾股定理是平面几何的基石,它不仅在几何解题中有着广泛的应用,而且在代数解题中也有许多应用.应用勾股定理解有关的代数题,必须首先对有关的代数式进行几何解释,说明它们的几何意义,从而将代数问题转化为几何问题,然后作出相应的几何图形,最后根据所作图形的几何性质,得出所要求解或求证的结论.下面举例说明.例工已…  相似文献   

8.
勾股定理的逆定理是证明两条线段垂直的重要理论依据之一,现举例说明它在解题中的应用.例1三角形的三边a、b、c适合a’+b‘+c’+338=10a+24b+26c,则此三角形为()(A)锐角三角形;(B)等腰三角形;(C)直角三角形;(D)钝角三角形.解由已知得,(a-5)‘+(b-12)‘+(c.13尸一0,…。-5,b-12,c-13.aZ干bZ-cZ此三角形为直角三角形.故选C.例2如图1,已知正方形ABCD,E是AB的中点,F是AD上一点,且AF一十AD.”“’“’“““““‘“‘”“‘一4“——”求证:EF上EC.证明设正方形边长为4a,则AE…  相似文献   

9.
勾股定理有其特殊的成立条件,而且三角形还有边的不确定,加之勾股定理与其他知识整合运用可能没有陷阱.因此.学生在解决相关问题时,如不注意,就容易出错.下面归纳学生解题出错的一些原因,供大家学习时参考.  相似文献   

10.
11.
《考试周刊》2019,(97):78-79
勾股定理作为最基本的几何定理,不仅是初中生必学的学习知识,同时也是中考的考点之一,它不仅揭示了直角三角形中三边的数量关系,同时也帮助学生得到了思维能力的提升。为此,本文主要从教材、学情、过程、方法等内容对勾股定理进行数学探究分析,通过对学生学习兴趣的激发、强化学生的数学思想,从而提高学生的数学能力。  相似文献   

12.
两个直角三角形有一条公共边时,可以写出表示公共边的勾股定理连等式,另一方面,在三角形中通过作适当的辅助线,可以得到有一条公共边的两个直角三角形。从而也可以写出表示公共边的勾股定理连等式,运用勾股定理连等式,可以使有关的几何问题得到巧解或简解。  相似文献   

13.
勾股定理是几何中重要的定理之一,且应用广泛,如何用勾股定理及其逆定理解题,下面举例说明. 例1 如图1,一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑一米,那么,梯子底端的滑动距离( )  相似文献   

14.
初中《几何》第一册218页勾股定理的逆定理:如果三角形的三边长 a、b、c 有下面的关系:a~2+b~2=c~2,那么这个三角形是直角三角形.下面举例说明它的应用.  相似文献   

15.
勾股定理是初中数学中极为重要的定理,它揭示了直角三角形三边之间的数量关系,完美的体现了“数形统一”的数学思想,将初中几何与代数很好地联系起来,有着非常广泛的应用.利用勾股定理列方程求解,是勾股定理应用中的一类典型问题.下面以几道常见习题为例,帮助同学们掌握此类问题的解题方法.  相似文献   

16.
<正>一、缘起——一种思路的意外受挫在一次单元测试中,我们采用了一道源自课本复习参考题的改编题:如图1,在矩形纸片ABCD中,AB=a,AD=2a,E是AD边上一点,n DE=AD(n为大于2的整数).连结BE,作BE的垂直平分线分别交AD、BC于点F、G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)如果四边形BFEG与矩形ABCD的面积比为17:30,求n的值.  相似文献   

17.
我们都知道,在直角三角形的计算中,已知两条边,要求第三边时,用勾股定理直接代入计算即可.但如果只知道其中的一条边要求另两条边呢?此时,未知的两条边之间一定存在某种数量关系,我们只要抓住这个数量关系,设出一个未知数,便可以表示出两条未知的边;  相似文献   

18.
勾股定理是初中数学中极为重要的定理,它揭示了直角三角形三边之间的数量关系,完美的体现了"数形统一"的数学思想,将初中几何与代数很好地联系起来,有着非常广泛的应用.利用勾股定理列方程求解,是勾股定理应用中的一类典型问题.下面以几道常见习题为例,帮助同学们掌握此类问题的  相似文献   

19.
直角三角形的直角边a、b的平方和等于斜边c的平方,即a2+b2=c2,这就是我们熟知的勾股定理,它揭示了直角三角形三边之间的数量关系.灵活巧用它,可使几何问题的解决变得简捷.例1如图1,已知AB⊥CD,△ABD、△BCE都是等腰直角三角形,CD=8,BE=3,则AC的长为()A.8B.5C.3D.&!34(2004年湖北省初中数学竞赛试题)解:依题意,AB=DB,BC=BE.∵BE=3,CD=8,∴BC=3,DB=5,AB=5,∵∠ABC=90°,∴AB2+BC2=AC2∴AC=!AB2+BC2&=&!34.例2如图2,AC=10,BC=17,CD⊥AB于点D,CD=8,求△ABC的面积.(2002年北京市初二数学竞赛试题)解:在△ABC中,∵CD…  相似文献   

20.
勾股定理是欧几里得几何中的重要定理之一,国外称之为毕达哥拉斯定理.它主要揭示直角三角形三边之间的度量关系,其主要内容是:在△ABC中,若∠C=90°,则a2+b2=c2;反之,若a2+b2=c2,则∠C=90°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号