首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
有理函数是指两个多项式的商所表示的函数 .下面以两个二次多项式的商所表示的函数f(x) =a2 x2 +a1x +a0b2 x2 +b1x +b0,x∈ [a ,b](1)为例 ,给出其值域求解的一个通用方法 .1 值域求解在 (1)式中 ,不妨限定b2 ≠ 0 (这是因为若b2 =0 ,则问题比较简单 ) ,对式 (1)作适当的变换 ,可转换为y =a2 x2 +a1x+a0b2 x2 +b1x+b0=a2b2 +a1b2 -a2 b1b2x+ a0 b2 -a2 b0b2b2 x2 +b1x+b0(2 )令m =a1b2 -a2 b1b2,n =a0 b2 -a2 b0b2,则式 (2 )变为y - a2b2 =mx+nb2 x2 +b1x+b0. (3)令    Y =y- a2b2,则式 (3)变为     Y =mx +nb2 x2 +b1x +b0. (4)…  相似文献   

2.
人教版《代数》第一册(下)第143页“读一读”介绍了多项式除以多项式,由教科书第14页的例题我们可以得到一个重要的关系式:被除式=除式×商式+余式.巧妙地运用这一关系式,可以解决以下几种类型的问题.  相似文献   

3.
在含有两个字母x、y的多项式中,如果同时以x代替y,y代替x后,得到的多项式与原来的多项式完全相同,那么称这个多项式是关于x、y的对称多项式.容易发现关于x、y的对称多项式都可以表示成关于x+y和xy的式子,如x2+y2=(x+y)2-2xy、y x+x y=x2+y2xy=(x+y)2-2xy xy等等,利用对称多项式这一性质,我们可以智取二次根式的有关求值问题.例1.已知x=3姨+1、y=姨3-1,求x2+2xy+y2的值.分析:如果直接将x、y的值代入计算  相似文献   

4.
一、为什么要学分解因式?请看问题:类比分数的约分:1520=3×54×5=34,将分式x2-y2x2+2xy+y2化简.由分数的约分可知,分式的约分就是约去分式的分子、分母中公共的因子.故需将分子、分母写成因式乘积的形式,即原式=(x+y)(x-y)(x+y)(x+y)=x-yx+y.类似的例子还有不少.在许多情况下,我们需要把一个多项式写成一些整式的乘积的形式,即需要将多项式分解因式.二、分解因式的基本方法有哪些?1.提公因式法.即将多项式中每一项的公共因子提出来.如将多项式3m2n-9mn2分解因式,3m2n和-9mn2这两项中有公因子3mn,故3m2n-9mn2=3mn(m-3n).实际上,提公因式的过…  相似文献   

5.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

6.
本刊84年第3期《综合除法在多项式求值中的综合应用》一文介绍了一种求有理系数多项式f(x)在x=b+cp~(1/n),x=b+di时的值的方法。本文介绍另一种方法,在k不大时(k=2、3)显得较为简便。设f(x)是n次有理系数多项式,x_1=b+cp~(1/n)(k相似文献   

7.
设非负整数a_1相似文献   

8.
初中代数中关于多项式的七个乘法公式,可用类比的方法增强初学者的记忆,并使之能够自然地将它们推广到更一般的情形。 1.两数和的平方与立方公式比较下列三式: (a+b)~1=a+b,(A_1) (a+b)~2=a~2+2ab+b~2,(A_2) (a+b)~3=a~3+3a~2b+3ab~2+b~3.(A_3)可知这三个等式的右端具有下述特点: (1)它们都是与左端幂次相同的齐次式,即各项的次数均相同,都等于左端的幂次; (2)都按照字母a降幂排列,同时又都按照  相似文献   

9.
利用勒让德多项式和盖根堡多项式的恒等式得出的x_1+x_2+…x_k=n非负整数解的个数的计算公式。  相似文献   

10.
定义设P(x)为m次多项式,则以a_n=P(n)为项的数列称为m次多项式P(x)的数列。问题设a_n为m次多项式P(x)的数列,问如何求和sum from k=1 to n(a_k)=sum from k=1 to nP(K)。为此我们先给出引理1 设f(x)为m次多项式,则一阶差分Δf(x)=f(x+1)-f(x)为m-1次多项式,命题是显然成立的,故证略。引理2 若P(x)=a_mx~m+…+a_1x+x_0,α_m≠0为一m次多项式。则有f(x)=β_m+1x~(m+1)+…+β_1x,使得Δf(x)=P(x)。证明时只要算出Δf(x)=f(x+1)-  相似文献   

11.
单元自测题     
复习与练习一、填空(每题2分,共28分)1. 多项式-12abx2+4x3-a2b3+3是  次  项式,其中5次项的系数是    .2. 计算: ① (a5)3 ÷a6 =     ,② (a - b)3 ·(b - a)4 =    .3. (- 3x - 4y) (    ) = 9x2 - 16y2, (-12a - b)2 =    .4. (-0.25)2 005 ×161 002 =    ; 已知am =2,an =3,则a2m-3n=      .5. 若a-b =5,ab =4,则a2 +b2 的值为    ,若x2 +2ax +16为完全平方式,则a =      .6. 设(1+ x)2(1- x) = a + bx + cx2 + dx3,则a + b + c + d =图1     .7. 我国北宋时期数学家贾宪在他的著作…  相似文献   

12.
一、巧添乘例1已知:若a=2011x+2008,b=2011x+2009,c=2011x+2010,则多项式a~2+b~2+c~2-ab-bc-ca的值是多少?分析:观察a、b、c,发现  相似文献   

13.
含积多项式是指多项式中含有几个整式的积的多项式。它可分为两类 : 类是形如(x+ A) (x+ B) + P(A、B、P均可为整式 )的多项式 ; 类是形如 (x+ a)· (a+ b)· (x+c)· (x+ d) + P(a、b、c、d均为整数 ,P为整式 )的多项式。不同类型有不同的方法 ,同一类型有着不同的技巧 ,要使学生达到见题变招、灵活运用的目的 ,就必须掌握两种不同类型的方法和技巧。一、 类多项式需要“重组”1.展合重组例 1.分解因式 :(x+ y) (x- y) + 4 (y- 1)。解 :原式 =x2 - y2 + 4 y- 4=x2 - (y2 - 4 y+ 4 )=x2 - (y- 2 ) 2=(x+ y- 2 ) (x- y+ 2 )。2 .配方重组…  相似文献   

14.
多项式有一个重要的定理: 如果使多项式f(x)=a_0x~n+a_1x~(n-1)+…+a.的值为零的不同x值(在复数域内)多于n个,那么a_0=a_1=…=a_n=0。(即f(x)≡0) 这个定理很有用。下面我们只就它的最  相似文献   

15.
一、用于求值例1已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a2+b2+c2-ab-bc-ca的值为( ) A.0 B.1 C.2 D.3  相似文献   

16.
在加权意义下 ,对契比谢夫的两定理给予推广 .证明了 :①在集合Hn 中总存在多项式P0 (x) ,使得‖f -P0 ‖ =P ;②多项式P0 (x)是 f(x) 的最佳加权逼近多项式的充要条件是 ρ(x)|p(x) -f(x)|在 [a ,b] 中不少于 n + 2 个点处达到其绝对极大值  相似文献   

17.
<正>通过学习我们知道:1.(a+b)~2=a~2+2ab+b~22.(a+b)~3=a~3+3a~2b+3ab~2+b~33.(a+b)~n=a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…C_n~(n-1)ab~(n-1)+b~n这是二项式定理,在学习中我发现,关于(a+b)~n的展开式也可以给出如下证明:(a+b)~n是n个(a+b)相乘,属于多项式乘多项式的问题,每个(a+b)在相乘  相似文献   

18.
在学完“单项式乘以多项式”后,作为知识的巩固和应用,现行华东师大版八年级数学上册配套使用的练习册第29页有这样一道习题(第8题):如果3x~2y(A+2y-3y~2)=15x~2y+6x~2y~2+B,那么多项式A=_,B=__.在课堂交流中引发学生质疑,激发学  相似文献   

19.
本文通过例题阐述证明组合等式时,如何根据题设特征选择适合的方法,供参考。一、待定系数法待定系数法的根据是多项式恒等定理:若 f(x)≡sum from i=0 to n a_ix~(n-i),g(x)≡sum from i=0 to n b_ix~(n-i),且,(x)≡g(x),则有a_i=b_i。(i=1,2,…,n). 例 1 求证C_m~0 C_n~k+C_m~1 C_n~(k-1)+…++C_m~k C_n~0=C_(m+n)~k。分析观察此式两端组合数的特点,即  相似文献   

20.
第一届希望杯初一第二试有一道填空题:当m____时,二元二次六项式6x~2+mxy-4y~2-x+17y-15可以分解为两个关于 x,y 的二元次三项式的乘积.给出的答案是 m=5.我认为该答案有疏漏.事实上,若将原式视为关于 x 的多项式,并整理为6x~2+(my-1)x+(-4y~2+17y-15),其判式⊿_x=(my-1)~2-4×6(-4y~2+17y-15)=(m~2+96)y~2-(2m+408)y+361.则原式能分解为两个一次实因式的充要条件是Δ_x为一完全平方式.显然,Δ_x是关于 y 的二次三项式,Δ_y=(2m+408)~2-4(m~2+96)×361,由Δ_y=0可得15n~2-17m-290=0,解之得 m=5或 m=-58/15,当 m=5时,原式分解为(3z+4y-5)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号