首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设α、β为同一极限过程中无穷小量。下面先叙述等价无穷小量的一个重要性质:若α~α’,β-β’,limα‘β’在,则有limα/β=limα’/β‘  相似文献   

2.
林志周 《天中学刊》1999,14(2):59-60
在高等数学和数学分析教材中,对等价无穷小的性质都不加讨论,对其应用仅给出了一个利用等价无穷小求函数极限的定理,而且这个定理往往又被误用,最典型的设用是究其误用的原因,是因为对等价无穷小的性质不明确.本文针对这种情况,重点讨论等价无穷小的性质,给出了几个定理,同时举出几个等价无穷小在求极限中应用的实例.1等价无穷小的性质定理定理1设在同一变化过程中,α,β,γ均为无穷小量.若α~β,β~γ,则α~γ.证由于α~β,β~γ,所以有,故α~γ(注;lim表示极限,其自变量变化过程与α,β,γ的相同;以下类…  相似文献   

3.
裴多(Pedoe)不等式是指:设△ABC,与△A′B′C′的边长分别为α,β,γ与α′β′,γ′,面积分别为S与S′,那么α′~2(β~2 γ~2-α~2) β′~2(γ~2 α~2-β~2) γ′~2(α~2 β~2-γ~2)≥16SS′①其中等号当且仅当△ABC~△A′B′C′时成立。这个不等式自1979年传入我国后,以其外形的有趣对称,证法的多种多样引起了广泛的兴趣和讨论,出现了一些新的证法。本文用解析几何的方法给出它的证明。如图放置△ABC与△A′B′C′,则A与  相似文献   

4.
本刊91年第1期《三角函数式的恒等变换与应用》一文的一例及其解答如下: 例12 已知(tg(α+β-γ))/(tg(α-β+γ))=tgγ/tgβ,求证sin2α+sin2β+sin2γ=0 证明:把已知化为 (sin(α+β-γ)cos(α+β-γ))/(cos(α+β-γ)sin(α+β-γ))=sinγcosβ/cosγsinβ由合分比定理,化简得 (sin2α)/(sin2(β-γ))=(sin(γ+β))/(sin(γ-β))  相似文献   

5.
定理1 弦AA′、BB′是椭圆b2x2+a2y2=a2b2(a〉b〉0)的长轴与短轴,点P是椭圆上任意一点,若AA′、BB′对点P的张角分别为∠A′PA=α,∠B′PB=β,并∠A′BA=y,则有cot2α+cot2β=cot2γ.  相似文献   

6.
题 若α、β、γ∈R,求u=sin(α-β)+sin(β-γ)+sin(γ-α)的最大值和最小值.  相似文献   

7.
题若α,β,γ∈R,求u=sin(α-β) sin(β-γ) sin(γ-α)的最大值和最小值.在本刊2006年第1期第40页上,应用4元均值不等式给出了该题的一种初等解法,其实,逆向利用行列式,可以给出该问题的一种巧思妙解.解u=sinαcosβ sinβcosγ sinγcosα-cosαsinβ-cosβsinγ-cosγsinα=sinαcosα1sinβcosβ1sinγcosγ1,构造点A(sinα,cosα),B(sinβ,cosβ),C(sinγ,cosγ),则|u|=2S△ABC. 1很明显,上面的三点A、B、C都在单位圆:x2 y2=1上.因为圆内接三角形,以正三角形的面积为最大,所以当△ABC为正三角形时,S△ABC取得最大值343,于是|u…  相似文献   

8.
平面几何中,有一个叫做海伦——秦九韶的三角形面积公式 S_△=(p(p-a)(p-b)(p-c))~(1/2), 其中a、b、c是三角形三边的长,p是周长的一半。有趣的是,在立体几何中,也有一个与之相类似的四面体体积公式 V四面体=1/3abc··(sinωsin(ω-α)sin(ω-β)sin(ω-γ))~(1/2),①其中a、b、c是共顶点的三条棱的长,α、β、γ是相邻棱组成的面角,ω是这三个面角和的一半。公式①的证明: 设四面体M—ABC中,MA=a,MB=b,MC=c,∠AMB=α,∠BMC=β,∠CMA=γ。作BO⊥平面MAC,垂足为O。作OA′⊥MA,垂足为A′。作OC′⊥MC,垂足为C′。连结BA′、BC′,则BA′⊥MA,  相似文献   

9.
1.问题提出 问题已知0≤α〈β〈γ〈2π,且{cosα+cosβ+cosγ=0 sinα+sinβ+sinγ=0,求α-β的值。  相似文献   

10.
定理如图,给定椭圆 x~2/a~2+y~2/b~2=1.PP′、QQ′是椭圆一对共轭直径.弦 BB′//QQ′,直线 l//PP′,M 是椭圆上异于 B、B′的任一点.直线QQ′、B′M、BM 分别交 l 于点O′、N、K.记 m=|QQ′|=r|OQ|,P(acos,bsin),B(acos α,bsin α),M(acos β,bsin β),则O′N·O′K=(a~2cos~2+b~2sin~2)/(cos(α-)+cos(β-){r~2[cos(α--cos(β-)]-2rcos(α-)cos(β-)+[cos(α-)+cos(β-)]}.(*)  相似文献   

11.
在f(t,x),β(t),fx(t,x),α′(t)连续,fx(t,x)≥-β(t),4β(t)≤-β(t),4β(t)≤π^2 α^2(t)-2α′(t),4β(t)≠π^2 α^2(t)-2α′(t)等主要条件下,证明了拟线性第二边值问题x ″=α(t)x′ (t,x),x(0)=α,x′(1)=b有唯一解。  相似文献   

12.
在允许取值范围内赋变量予特殊值,从而使问题获解的方法称为“特取法”。 [例1] 公式(Acos(θ+α)+Bsin(θ+β))/(A′(θ+α)+B′(cosθ+β))的值与θ无关,求证:AA′-BB′=(A′B-AB′)sin(α-β)。证:∵公式的值与θ无关,∴当θ分别取特值0,π/2时分式的值相同: (Acosα+Bsinβ)/(A′sinα+B′cosβ)=(-Asinα+Bsinβ)/(A′cosα-B′sinβ)去分母,整理即得。 AA′-BB′=(A′B-AB′)sin(α-β)。 [例2] 关于x的不等式acosx+bcos3x>1无解,证明:|b|≤1。(苏联15届奥林匹克赛题)  相似文献   

13.
在传统α-β-γ滤波算法的基础上,提出一种适用于多目标、非均匀采样时间情况的修正α-β-γ滤波算法.介绍了匀加速(CA)模型和α-β-γ滤波算法,利用相关公式推导出修正后的滤波算法,并进行仿真验证.仿真结果证明了本算法对解决多目标跟踪问题的有效性.  相似文献   

14.
许多三角最值问题,若用构造法求解,可使复杂问题简捷获解.这样不仅有利于数学思想的运用,而且有利于培养创新意识和创新能力.根据题设条件的特征,恰当构造一种新形式是灵活运用此法的关键,本文举例介绍几种方法.一、构造对偶式,用整体思想例1已知sin2α+sin2β+sin2γ=34,试求sin2α+sin2β+sin2γ的最大值.解:由sin2α+sin2β+sin2γ=34可得cos2α+cos2β+cos2γ=32.(1)构造对偶式sin2α+sin2β+sin2γ=x,(2)(1)2+(2)2得94+x2=3+2[cos(2α-2β)+cos(2β-2γ)+cos(2α-2γ)]≤3+2×3=9,其中等号可以在例如α=β=γ=π6时成立.∴x2≤274,|x|…  相似文献   

15.
公式tan(α+β)=tanα+tanβ/1-tanαtanβ可以变形为: 1.tanα+tanβ+tan(α+β)tanαtanβ=tan(α+β); 2.当α+β+γ=κπ(k∈Z)时,还可得到tan(α+β)=tan(κπ-γ)=-tanγ,变形即:tanα+tanβ+tanγ=tanαtanβtanγ.上述两个变式有着重要的应用.例1 tan20°+tan 40°+3~(1/2)tan 20°tan 40°的值是__.(1996·全国高考)  相似文献   

16.
文[1]给出如下一个命题: 命题A设0〈α,β,γ〈π/2,且sin^3α+sin^3β+sin^3γ=1,则tan^2α+tan^2β+tan^2γ≥3/3√9-1.  相似文献   

17.
本文拟给出证明有关角的不等式问题的一种简捷独特的方法,作为对文[1]和[2]的一点补充。方法要点:利用题中已有的角,造出三个正角α、β、γ而α+β+γ=π,便得到一个(以α、β、γ为内角的)三角形;结合题设并在此三角形中运用有关结论实现两个转化:由三角函数关系转化为边的关系;再由边的关系转化为角的关系,从而得到要证的角的不等式。兹举例来说明。例1 已知α、β为锐角,且sin(α+β)=2sinα,求证:α<β。证:∵α、β为锐角,∴π-(α+β)>0且α+β+[π-(α+β)]=π。于是α、β、π-(α+β)可作为一个三角形的三内角,设其对边长分别是a、b、  相似文献   

18.
定理 对于αi,βi,γi∈(0,π),其中i=1,2,且α1+α2+β1+β2+γ1+γ2=2π则sinαisinβ1sinγ1+sinα2sin2sinγ2≤2sin(α1+α2)/2 sin(β1+β2)/2sin(γ1+γ2)/2(1)当且仅当α1=α2,β1=β2,γ1=γ2时,(1)式取等号。  相似文献   

19.
众所周知,在三角形中有正弦定理、余弦定理、射影定理,它们揭示了三角形中边角间的重要关系.这三个定理联系紧密,并可互相推出.在四面体中,也有类似的三个定理,它们表示了面角与二面角之间的关系,当然也可彼此互推. 在四面体O-ABC中,设三个面角分别为α、β、γ,对应的二面角分别为θ-α、θ-β、θ-γ,(如图1)则有 定理1 cosα=cosβ·cosγ sinβ·sinγ·cosθ_α cosβ=cosα·cosγ sinα·sinγ·cosθ_β cosγ=cosα·cosβ sinα·sinβ·cosθ_γ 证明 利用有关射影的定理:(1)平面上折线的各边射影之和等于封闭线段在射影轴上的射影.(2)直线在轴上的垂直投影等于被投线段的长度乘以该线段和轴的交角的余弦.  相似文献   

20.
若有无穷小量序列 {αn},(其中αn≠ 0 (n=1 ,2 ,3 ,… ) ) ,且有当 n→ +∞时αn+ 1 /αn→ c  (0 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号