首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
Cypripedium subtropicum S.  C. Chen et K. Y. Lang is a phytogeography- cally significant new species with its habit, inflorescence and column very similar to those of Selenipedilum of tropical America.  It is found in Mêdog of southeastern Xi- zang, China.  Its slender leafy stem bears at the summit a many-flowered raceme, am- ounting to 1.5 m in height. Although its ovary is unilocular—this is the reason why we place it in Cypripedium, the column characters resemble those of Selenipedilum. For example, the staminode is rather small and its long stalk is very similar in texture and color to the filament of the fertile stamens. Obviously, it is a primitive new species re- lated to Selenipedilum based on the similarities mentioned above.       In the subfamily Cypripedioideae, as generally recognized, Selenipedilum is  the most primitive genus, from which or whose allies Cypripedium is derived.  Of phyto- geographical significance is the fact that Selenipedilum occurs in Central America and northern South America, while a cypripedium akin to it is discontinuously distributed in subtropical Asia.  This suggests that Selenipedilum or Selenipedilum-like  form be once continually distributed in North America and eastern Asia when the climate there was warmer, as it is in the subtropics today.  The floristic relationship between Central America and subtropical Asia appears to be closer than expected, as shown by the dis- tribution patterns of Tropidia, Erythrodes, etc.  Based on the occurrence of all six sec- tions and particularly the most primitive form in eastern Asia, Cypripedium seems to be of Asian, rather than Central American, origin.  Selenipedilum possesses some very primitive characters, such as trilocular ovary, vanilla-scented fruit, seed with sclerotic testa, simple column and more or less suffrutescent habit.  The latter is considered by Dahlgren & Clifford (1982) to be one of ancestral characters of monocotyledons, which is now very rare not only in Orchidaceae but also in all monocotyledons.  It is indeed necessary to make further investigations on Selenipedilum and also the new species pub-lished here, as well as a detailed comparison between them.  相似文献   

2.
 As a genus Acronema was first proposed by Falconer, but it was only a nomen nudum.  The genus was effectively established by Edgeworth (1851) on the basis of a himalayan species, Acronema tenerum (Wall) Edgew. (= Sison tenerum Wall. 1828). Bentham & Hooker had placed the genus within Pimpinella in 1867.  C. B. Clarke followed the same treatment in the Flora of British India in 1879. The much detailed systematic work of the genus was done by H. Wolff in Engl.  Pflanzenreich (1927).       The chief distinguishing character of the genus lies in the acuminulate of filamen- tous apices of the petals.      At present the genus contains about 23 species chiefly in the himalayan regions and South-west China, many being found in Sichuan, Yunnan and eastern Xizang.       They are usually growing under the shade of forest, roadside and riverside at the altitude 2100—4800 meters.       In this paper 18 species and 2 varieties are presented, of which 5 species, 2 varieties and 1 combinations are considered as new and three arc first recorded fromChina.  相似文献   

3.
木兰科分类系统的初步研究   总被引:10,自引:0,他引:10  
A new system of classification of Magnoliaceae proposed.  This paper deals mainly with taxonomy and phytogeography of the family Magnoliaceae on the basis of external morphology, wood anatomy and palynology.  Different  authors have had different ideas about the delimitation of genera of this family, their controversy being carried on through more than one hundred years (Table I).  Since I have been engaged in the work of the Flora Reipublicae Popularis Sinicae, I have accumulated a considerable amount of information and material and have investigated the living plants at their natural localities, which enable me to find out the evolutionary tendencies and primitive morphological characters of various genera of the family.  According to the evolutionary tendencies of the characters and the geographical distribution of this family I propose a new system by dividing it into two subfamilies, Magnolioideae and Liriodendroideae Law (1979), two tribes, Magnolieae and Michelieae Law, four subtribes, Manglietiinae Law, Magnoliinae, Elmerrilliinae Law and Micheliinae, and fifteen genera (Fig. 1 ), a system which is different from those by J. D. Dandy (1964-1974) and the other authors.      The recent distribution and possible survival centre of Magnoliaceae. The members of Magnoliaceae are distributed chiefly in temperate and tropical zones of the Northern Hemisphere, ——Southeast Asia and southeast North America, but a few genera and species also occur in the Malay Archipelago and Brazil of the Southern Hemisphere. Forty species of 4 genera occur in America, among which one genus (Dugendiodendron) is endemic to the continent, while about 200 species of 14 genera occur in Southeast Asia, of which 12 genera are endemic.  In China there are about 110 species of 11 genera which mostly occur in Guangxi, Guangdong and Yunnan; 58 species and more than 9 genera occur in the mountainous districts of Yunnan.   Moreover,  one  genus (Manglietiastrum Law, 1979) and 19 species are endemic to this region.  The family in discussion is much limited to or interruptedly distributed in the mountainous regions of Guangxi, Guangdong and Yunnan.  The regions are found to have a great abundance of species, and the members of the relatively primitive taxa are also much more there than in the other regions of the world.      The major genera, Manglietia, Magnolia and Michelia, possess 160 out of a total of 240 species in the whole family.  Talauma has 40 species, while the other eleven genera each contain only 2 to 7 species, even with one monotypic genus.   These three major genera are sufficient for indicating the evolutionary tendency and geographical distribution of Magnoliaceae.  It is worthwhile discussing their morphological  characters  and distributional patterns as follows:      The members of Manglietia are all evergreen trees, with flowers terminal, anthers dehiscing introrsely, filaments very short and flat, ovules 4 or more per carpel.  This is considered as the most primitive genus in subtribe Manglietiinae.  Eighteen out of a total  of 35 species of the genus are distributed in the western, southwest to southeast Yunnan. Very primitive species, such as Manglietia hookeri, M. insignis  and M. mega- phylla, M. grandis, also occur in this region. They are distributed from Yunnan eastwards to Zhejiang and Fujian through central China, south China, with only one species (Manglietia microtricha) of the genus westwards to Xizang.  There are several species distributing southwards from northeast India to the Malay Archipelago (Fig. 7).      The members of Magnolia are evergreen and deciduous trees or shrubs, with flowers terminal, anthers dehiscing introrsely or laterally, ovules 2 per carpel, stipule adnate to the petiole.  The genus Magnolia is the most primitive in the subtribe Magnoliinae and is the largest genus of the family Magnoliaceae. Its deciduous species are distributed from Yunnan north-eastwards to Korea and Japan (Kurile N. 46’) through Central China, North China and westwards to Burma, the eastern Himalayas  and northeast India.  The evergreen species are distributed from northeast  Yunnan  (China)  to  the Malay Archipelago.  In China there are 23 species, of which 15 seem to be very primi- tive, e.g. Magnolia henryi, M. delavayi, M. officinalis and M. rostrata, which occur in Guangxi, Guangdong and Yunnan.      The members of Michelia are evergreen trees or shrubs, with flowers axillary, an- thers dehiscing laterally or sublaterally, gynoecium stipitate, carpels numerous or few. Michelia is considered to be the most primitive in the subtribe Micheliinae, and is to the second largest genus of the family.  About 23 out of a total of 50 species of this genus are very primitive, e.g. Michelia sphaerantha, M. lacei, M. champaca,  and  M. flavidiflora, which occur in Guangdong, Guangxi and Yunnan (the distributional center of the family under discussion)  and extend eastwards to Taiwan  of  China, southern Japan through central China, southwards to the Malay Archipelago through Indo-China. westwards to Xizang of China, and south-westwards to India and Sri Lanka (Fig. 7).      The members of Magnoliaceae are concentrated in Guangxi, Guangdong and Yunnan and radiate from there.  The farther away from the centre, the less members we are able to find, but the more advanced they are in morphology.  In this old geographical centre there are more primitive species, more  endemics  and  more monotypic genera. Thus it is reasonable to assume that the region of Guangxi, Guangdong and Yunnan, China, is not only the centre of recent distribution, but also the chief survival centreof Magnoliaceae in the world.  相似文献   

4.
The first classification for the genus Ormosia was proposed by Bentham. It was followed by Taubert (1892) in Engler and Prantl’s Nat. Pflanzenf., who divided the genus into 2 sections.  On the basis of the pod structure and seed characters Prain (1900) arran- ged the genus in 2 sections with 4 subsections.  In the monograph on the genus Merrill and L. Chen ( 1943 ) limited their taxonomic study to Chinese and Indo-Chinese species, and recognized 34 species and 15 series.  Recently Yakovlev (1971-1976) has treated the ge- nus in 6 separate genera.      In the present paper the author recognizes 35 species, of which 7 species and 2 varie- ties are new.  The Chinese species of the genus are grouped into 3 sections and 6 series inmy classification.  相似文献   

5.
The morphological characters in the genus Orobanche were evaluated from the taxonomic point of view.  The author finds that the plants of this genus are relatively similar to each other in respect to characters of vegetative organs, fruits and seeds.  But the differences in the floral structures can be served as a basis for delimitating infrageneric taxa.   The seed coat of 18 species and pollen grains of  6 species were also examined under scanning electron microscope (SEM). They seem to have little significance for distinguishing species.       The result supports G. Beck’s (1930) division of the genus Orobanche into 4 sections, of which 2 occur in China, based on the characters of the inflorescence, bracteoles and calyx. The author considers that some characters, such as anther hairy or not, upper lip of corolla entire or not, lower lip longer or shorter than the upper one, the state of corolla-tube inflec-  tion and the hair type of filaments and plants, are important in distinguishing Chinese species.  A key to the species of Orobanche in China is given.       This genus consists of about 100 species, and is mostly confined to Eurasia, with over 60  species found in Caucasus and Middle Asia of USSR, where may be the mordern  distribu-  tional  centre.        Orobanche L. in China is represented by 23 species, 3 varieties and l forma. As shown in  Table 1, most species (12 species) are found in Xinjiang, which clearly shows a close floristic  relationship between this region and Middle Asia of USSR.  6 species are endemic to China,  of which 4 are confined to the Hengduan Mountains  (Yangtze-Mekong-Salwin divide).        The relationships between this genus and related ones of Orobanchaceae are also discussed.  The author holds the following opinions: the genus Phelypaea Desf. should be considered as a   member of Orobanche L. Sect. Gymnocaulis G. Beck,  the monotypic genus,   Necranthus A.   Gilli endemic to Turkey, is allied with Orobanche L. Sect.  Orobanche, the monotypic genus,   Platypholis Maxim, endemic to Bonin Is. of Japan, is far from Orobanche L. in relation and   should be regarded as a separate genus.        The 11 OTU’s, including all the sections of Orobanche L. and 7 genera of Orobanchaceae,   and 15 morphological characters were used in the  numerical  taxonomic treatment  to  test  the   above-mentioned  suggestions.   After standardization of characters, the correlation matrices were   computerized.  The correlation matrices were made to test the various clustering methods.   At    last the UPGMA clustering method was chosen and its result is shown in a phenogram.  The   result of numerical analysis is basically in accordance with the suggestions.  相似文献   

6.
The classical and numerical taxonomy, palynology and the geographical dis- tribution of the Genus Schizopepon are dealt with in the present paper.  Having comme- nted on various opinions regarding the systematic position of the genus, the present au- thors consider that C. Jeffrey’s treatment of Schizopepon as a new and monogeneric tri- be, Schizopeponeae, should be supported.      The gross morphological characters in the genus are assessed from the taxonomic point of view.  Some characters, such as stamens with an elongated connective or not, different insertions of ovules and various forms of ovaries and fruits, may be used for distinguishing subgenera.      The pollen grains of all the species were observed under light microscope (LM) and scanning electron microscope (SEM).  The results show that a strong differentiation has taken place in the pollen of the genus, and in consequence it may be regarded as an important basis for dividing subgenera and species. Especially it should be pointed out that degrees of development of colpi and positions of ora are positively correlated with the external characters used for distinguishing subgenera.      According to the morphological and palynological characters, the genus Schizopepon may be divided into three subgenera and eight species: 1. Subgenus Schizopepon: 5 spe- cies, S. bryoniaefolius Maxim., S. monoicus A. M. Lu et Z. Y. Zhang, S. dioicus Cogn., S. longipes Gagnep. and S. macranthus Hand.-Mazz.; 2. Subgenus Rhynchocarpos A. M. Lu et Z. Y. Zhang: 1 species, S. bomiensis A. M. Lu et Z. Y. Zhang; 3. Subgenus Neoschi- zopepon A. M. Lu et Z. Y. Zhang: 2 species, S. bicirrhosus (C. B. Clarke) C. Jeffrey and S. xizangensis A. M. Lu et Z. Y. Zhang.      The 8 OTU’s including all the species of this genus and 31 characters, of which 16 are morphological characters and 15 palynological characters, were used in the numerical taxonomic treatment.  After standardization of characters, the correlation and distance matrices were computed.  The correlation matrices are made to test the various clustering methods.  At last, the UPGMA clustering method was selected and its result is shown in the form of phenogram.  The result of numerical analysis is similar to that of the classical classification.      Schizopepon Maxim. is a genus of East Asia-Himalayan distribution. China has all 8 species and 2 varieties, of which 6 species are endemic. Based on the statistics of spedies number, the distribution centre of the genus is considered to be in the Hengduan Mountains (Yangtze-Mekong-Salwin water divides) and the adjacent areas of the southwest China.  相似文献   

7.
 We have described a new genus Taihangia, collected from, the south part of Taihang Mountain in northern China. At the same time, comparative studies on Taihangia with its related genera have been made in various fields including external morphology, anatomy of carpels, chromosome and pollen morphology by light, scanning and transmission electron microscope. In addition, isoperoxidases of two varietier were analysed by means of polya-crylamide gel slab electrophoresis. The preliminary results are as follows:       Morphology: The genus Taihangia is perennial and has simple leaves, occasionally with 1—2 very small reduced lobes on the upper part of petiole; flowers white, andromo- noecious and androdioecious, terminal, single or rarely 2 on a leafless scape; calyx and cpicalyx with 5 segments; petals 5; stamens numerous; pistils numerous, with pubescent styles, spirally inserted on the receptacle in bisexual flowers, but with less number of abortive and glabrous pistils in male flowers.       In comparison with the related genera such as Dryas, Geum, Coluria and Waldsteinia, the new genus has unisexual flowers and always herbaceous habit indicating its advanced feature but the genus has a primitive style with thin and short hairs as compared with the genus Dryas which has long, pinnately haired styles, a character greatly facilitamg anemo-choric dissemination. The styles of Taihangia are slender and differ from those of the ge-nus Geum which are articulate, with a persistent hooked rostrum, thus adapting to epizo-ochoric dissemination to a higher degree.       The anatomy of carpels shows the baral position of ovules in the genus Taihangia like those in other related genera such as Dryas, Geum, Acomastylis, Coluria and Waldsteinia. This suggests that the new genus and its related ones are in a common evolutionary line as compared with the other tribes which have a pendulous ovule and represent a separate evolutionary line in Rosaceae. Dorsal and ventral bundles in carpels through sections are free at the base. Neither fusion, nor reduction of dorsals and vertrals. are observed. This shows that the genus Taihangia is rather primitive.       Somatic chromosome: All the living plants, collected from both Honan and Hopei Provinces were examined. The results show that in these plants the chromosome number is 2n= 14, and thus the basic number of chromosome is x=7. Such a diploid genus is first found in both anemochoric and epizoochoric genera. Therefore, in this respect Taihangia is primitive as compared with herbaceous polyploid genus Geum and related ones.      Pollen: The stereostructure shown by scanning electron microscope reveals  that  the pollen grains of the genus Taihangia are ellipsoid and 3-colporate. There are two types of exine sculpture. One is rather shortly striate and it seems rugulate over the pollen surface; the other is long-striate. The genus Dryas differs in having only short and thick striae over the surface. The genus is similar to the genera Geum, Coluria and Waldsteinia in colpustype, but differs from them in that they all have long, parallel striae which are distributed along the meridional line.       In addition, under transmission electron microscope, the exine in the Taihangia and related genera Acomastylis, Geum, Coluria, Waldsteinia and Dryas has been shown to be typically differentiated into two distinct layers, nexine and sexine. The nexine, weakly statined, appears to consist of endoxine with no foot-layer, in which the columellae are fused, and which is thicker beneath the apertures. The sexine is 2-layered, consisting of columellae and tectum. Three patterns of tectum can be distinguished in the tribe Dryadeae: the first, in the genera Taihangia, Acomastylis, Geum, Coluria and Waldsteinia, is tectate-imperforate, with the sculpturing elements both acute and obtuse at the top and broad at the base; the second, in the genus Dryas, is semitectate, with the sculpturing elements shown in ultrathin sections rod-like and broader at the top than at the base or as broad at the top as at the base, and the third, tectate-perforate, with the sculpturing elements different in size. From the above results, the herbaceous groups and woody ones  have palynologically evolved in two distinct directions, and the genus Taihangia is related to other herbaceous genera such as Acomastylis, Geum, Coluria and Waldsteinia, as shown in the electron microphotographs of ultrathin sections. The genus Taihangia, however, is different from related herbaceous genera in that the pollen of Taihangia is dimorphic, i.e. in addition to the above pattern of pollen another one of the exine in Taihangia is rugulate, with the sculpturing elements shown in the ultrathin sections being obtuse or emarginate and nearly as broad at the top as at the base.      The interesting results obtained from the comparative analysis of morphology, ana- tomy of carpels, chromosome countings, microscopic and submicrosocopic structures of pollen may enable us to evaluate the systematic position of Taihangia and to throw a new light on evolution of the tribe Dryadeae. It is well known that the modes of dissemination of rosaceous fruits play an important role in the expansion and evolution of the family. The follicle is the most primitive and the plants with follicles, like the Spiraeoideae, are mostly woody and mesic, while the achene, drupe and pyrenarium are derived. In Rosoideae  having a achene is a common feature. Particularly in the tribe Dryadeae, which is distinguished from the other related tribes by having orthotropous ovules, the methods of dissemination of fruits have developed in three distinct specialized directions: anemochory with long, plumose styles (e.g. Dryas), formicochory or dispersed by ants or other insects, with the deciduous styles (e.g. Waldsteinia and Collria),and epizoochory with the upper deciduous stigmatic part and the lower persistent hooked rostrum, an  adhesive organ favouring  epizoochory dissemination (e. g. Geum and related taxa). Taihangia is a genus endemic to mesophytic forest area of northern China. Due to its narrow range and specific habit as well as pubescent styles, neither perfectly adapted to anemochory nor to epizoochory, the genus  Taihangia might be a direct progeny of the ancestry of anemochory. Maintaining the diploidy and having an ntermediate sculptural type of pollen, the new genus might probably represent a linkage between anemochory and zoochory (including epizoochory and dispersed by ants).       Experimental evidence from isoperoxidases shows the stable zymograms of root and roostoks. The anodal isozyme of T. rupestris var. rupestris may be divided into 6 bands: A, B, C, D, E, F, and T. rupestris var. ciliata into 4 bands: A, B, C, G. The two varietiesof the species share 3 bands: A, B, C. However, D, E and F bands are characteristic of var. rupestris and G band is limited to var. ciliata. As far as the available materials are concerned, the analysis of isoperoxidases supports the subdivision of the species into two varieties.  相似文献   

8.
The reproductive feature of the nemalionalean genus Liagora is characterized by the laterally situated carpogonial branch which is produced by the ordinarily assi- milative filament.  A study of L. farinosa Lamx. has revealed that the carpogonial branches of this species are not borne on the  ordinarily  assimilative  filaments  but restricted to a kind of short filaments (referring to as “fertile filaments”  in the present article) which are, in turn, initiated by the basal cells of the assimilative filaments.  The carpogonial branches are modified furcations of the fertile filaments. The fertile filaments may, however, grow and send out assimilative filaments concur- rently with the maturation of the carpogonial branches.  Therefore, the origin of the carpogonial branches is best shown in their younger developing stages but more or less obscure in age.      Boergesen, who examined Lamouroux's type, made a detailed study of L. farinosa from the Canary Islands.  The depictions given by Boergesen, Yamada (1938, f. 15), Tseng (1941, f. 6) and Umezaki (1961, f. lA) concisely illustrated the feature of the fertile filaments in this species, although all these workers had not envisaged the taxonomical significance of the peculiar position of the female organs.  In our opin- ion, the differentiation of cortical filaments into assimilative and reproductive as seen in L. farinosa (even though in a preliminary stage)  suggests that the progressive evolutionary changes have occurred in this species.  The unique situation of L. fari- nosa is, in fact, no parallel in any genus of the, family where female organs are directly produced (or transformed) by the assimilative filaments.       It thus appears there is no justification for retaining L. farinosa in the genus Liagora.  A new genus, Ganonema Fan et Wang gen. nov. is therefore proposedfor accommodating the species, G. farinosa (Lamx.) Fan et Wang comb. nov.  相似文献   

9.
10.
 Acanthochlamydoideae, a new subfamily of Amaryllidaceae, is proposed in the pre- sent paper, based upon the monotypic genus Acanthochlamys which was detected by the writer in 1979 and named Didymocolpus as a new genus but was preceded by P. C. Kao in 1980 under the former name.  The genus is indeed of great morphological in- terest. It has semicylindric leaves with a deep furrow on the ventral and dorsal sides respectively.  The lower part of the leaf is connate with, or adnate to, the lower mid- rib of a rather large and membranous vagina . Such a feature, as far as we know, is very rare in the monocotyledons.      The flower resembles that of Amaryllidaceae in having inferior ovary, six stamens and corolla-like perianth with a rather long tube.  But it is quite different in other characters, such as head-like cyme, leaf-like bracts and bisulcate leaves, which all are foreign to any taxon known in the Amaryllidaceae.  On the other hand, it bears some resemblance particularly in habit and inflorescence  to  Campynemanthe  of  the Hy- poxidaceae, and also to Borya and Bartlingia of the Liliaceae (in the tribe John- sonieae), but differs in its long perianth-tube and curious leaf structure.  It is highly probable that the resemblance between them is only superficial and not indicative of direct or close relationship.      This is no doubt a very curious plant of which we still know incompletely, and for which an appropriate place in the monocotyledons has not yet been found.  Con- sidering its floral characters, however, it seems safe for the present to place it as a separate subfamily in the Amaryllidaceae and is juxtaposed with the Ixiolirioideae and Amaryllidoideae, the only two subfamilies of Amaryllidaceae according to H. Mel- chior (1964), and, of course, to either of them it is not directly related. Its true affinity remains problematic.      The only species, Acanthochlamys bracteata, is found in Mar-er-kan (102°12'N, 31°47'E), Qian-ning (101°30'N, 30°33'E), Xiang-cheng  (99°39'N, 28°54'E)  and Dau cheng (100°10'N, 29°03'E) in western Sichuan of southwest China, in open bushland or grassland at an altitude between 2700—3500 meters.  Its geographical distribution is mapped and its morphological details are illustrated to facilitate its identification.    相似文献   

11.
本文叙述了木蓝属系统研究的简史,对该属形态特征的演化趋势及属下分类进行系统   研究,根据植物习性、叶的特征、果实形态及含种子数,将国产木蓝属80种,1变种归纳为3亚   属,并将木蓝亚属分为14亚组,其中包括9个新亚组,对其中一些种类作了归并及处理,并编    写了分种检索表。  相似文献   

12.
独叶草花粉形态的研究及其在分类上的意义   总被引:1,自引:0,他引:1  
 独叶草  (Kingdonia uniflora Balfour f.et W.W.Smith)  为我国特有植物,     由于它的开放的二叉分枝叶脉,引起了植物学家的很大兴趣和广泛注意,并从     各个方面对它进行了研究。关于它的花粉形态,除Forster(1961)曾有过简短     描述外,国内外都未研究过。本文对它的花粉形态进行了系统的研究,通过光学     显微镜、扫描电镜和透射电镜观察了它的外部形态和外壁结构。  并讨论了有关    分类问题。  相似文献   

13.
马兜铃科的地理分布及其系统   总被引:1,自引:0,他引:1  
马兜铃科基本是一个热带科。  东亚的横断山至华南一带是其原始分布与分化中心,热带美洲是其次生分布与分化中心。科的形态演化趋势是花被由分化的双被到不分化的单被,由分离到合生,由杯状到管状;雄蕊由多数到少数,由分离到与雌蕊结合成为合蕊柱;于房由半下位到完全下位;果实由蓇葖状蒴果到蒴果。马兜铃科分2亚科4族6属。  相似文献   

14.
蔷薇科原始属植物叶表皮解剖及其系统学意义   总被引:1,自引:0,他引:1  
本文研究了蔷薇科原始的六个属的代表种的表皮结构。发现在Lyonothamus,Exochorda,     Lindleya和Vauquelinia属中气孔分布于下表面;在最原始的Kagneckia属和与之最接近     的Quillaja属中,除个别种外,气孔在叶表两面分布。它们的气孔类型分化较复杂,有5种类     型,即无规则型(Anomocytic)、辐射型(Actinocytic)、轮列型(Cyclocytic)、平列型(Paracytic)     和四细胞型(Staurocytic)。同时还发现在Kagneckia,Quillaja,Lindleya和Exochorda 4个     属中气孔组成有多型现象,即在叶表皮中同时存在有2-3种气孔类型;在Vauquelinia属和     Lyonothamus属中主要为一种类型气孔组成;尤其是在Lyonothamus属中,气孔集生成块,其     间没有任何表皮细胞间隔,保卫细胞下陷,副卫细胞在表面联合加厚,成为坛状气孔,这在蔷薇     科中十分独特。  表皮的形态结构研究证据支持了得自细胞学上的证据(Goldblatt 1976),    由Hutchinson(1964)定义的蔷薇科原始的Trib. Quillajeae族,是一个不自然的类群。  相似文献   

15.
紫草科微孔草属及其近缘属花粉形态的研究   总被引:1,自引:0,他引:1  
 本文用光学显微镜和扫描电镜观察了微孔草属(Microula Benth.)6组16种及其相关的3属6 种植物的花粉,并对微孔草属2种和齿缘草属(Eritrichium Schrad.)2种花粉做了花粉壁超微结构的 研究。微孔草属及其相关的3属花粉为哑铃形,花粉体积很小,最大的为12.18×7.13μm,最小的只 有6.36×3.36μm,具相间排列的三孔沟和三假沟。但他们在赤道部位的缢缩程度、萌发孔特征、表 面纹饰及超微结构有明显的不同。从花粉形态看,微孔草属较原始,且与锚刺果属(Actinocarya Benth.)有较密切关系;齿缘草属具双内孔或单内孔且为异极,为进化类型。  相似文献   

16.
中国金缕梅科叶表皮毛的变异与演化   总被引:2,自引:0,他引:2  
本文以金缕梅科13属25种植物为代表,在光镜和电镜下观察了其表皮毛的微形态和类型。参 照Theobald的方案,将该科的表皮毛分为四种类型。这些类型在不同亚科和属间的分布呈现出系统演化意义。作者从表皮毛类型的角度讨论了该科的系统演化问题。  相似文献   

17.
山茱萸属应予重新确认   总被引:1,自引:0,他引:1  
The genus Macrocarpium has been accepted only by a few scholars since its separation from Cornus L. by T. Nakai in 1909. Bentham,  Hooker,  Hutchinson and the others consider that the ovary of Macrocarpium is 2-celled and the genus should be placed back into Cornus. We have discovered that are generally I-celled.  In addition, Macrocarpium is different from Cornus in basic chromosome number  (X),  flowering physiological character,  inflorescence type and involucral scale. Thus the genus Ma-crocarpium (Spach) Nakai should be reaffirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号