首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2005年湖南省数学竞赛压轴题为:若正数a,b,c满足b+a c=a+b c-ca+b,求证:a+b c≥174-1.这是从等式开始的解证多元分式不等式的问题,较新颖.考生的得分率很低,而且标准答案也不易,因而值得探讨其典型解证方法.证法1(标准答案)由条件有a+b c=ca+b+b+a c,令a+b=x,b+c=y,c+a=z,则a=x+z2-y,b=x+y2-z,c=z+y-x2,从而原式变为x+2yz-z=y+z-x2x=x+2 zy-y,即x+z y=y+x z+z+y x-1≥xz+zy+1≥x 4+z y+1.令x+z y=t,则t≥4t+1,可得t≥1+2 17或t≤1-2 17(不合要求,舍去),故a+b c=x+2 yz-z=2t-21≥17-14.证法2由条件有a+b c=b+a c+ca+b=ab+a2 ac+bc+c2 ac≥(a+…  相似文献   

2.
由完全平方公式,得(a-b)2=a2-2ab+b2,(b-c)2=b2-2bc+c2,(c-a)2=c2-2ca+a2,∴(a-b)2+(b-c)2+(c-a)2=2(a2+b2+c2+ab-bc-ca),∴a2+b2+c2-ab-bc-ca=12[(a-b)2+(b-c)2+(c-a)2].这是一个非常重要的等式,巧用它,某些代数题的解答可变得简易、迅捷.例1如果a=1999x+2001,b=1999x+2002,c=1999x+2003,那么a2+b2+c2-ab-bc-ca的值是().(A)1;(B)2;(C)3;(D)4.解:已知三等式两两相减,得a-b=-1,b-c=-1,c-a=2.原式=12[(a-b)2+(b-c)2+(c-a)2]=3.例2若a、b、c是不全相等的任意有理数,且x=a2-bc,y=b2-ca,z=c2-ab,则x、y、z().(A)都小于0;(B)都大于0;(C)至少有…  相似文献   

3.
一、选择题 1.设a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为集合M和N,那么"a1/a2=b1/b2=c1/c2"是"M=N"的( ). A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件  相似文献   

4.
性质1 若a+b+c=0,则方程ax2+bx+c=0有一个根是1. 证明:∵a+b+c=0,∴c=-(a+b).∴ax2+bx-(a+b)=0.∴(x-1)(ax+a+b)=0.∴x=1或x=-1-b/a.  相似文献   

5.
一、选择题: 1.设命题P:关于x的不等式a1x2+b1x+c1>0与a2x2+b2x+c2>0的解集相同,命题Q:a1/a2=b1/b2=c1/c2,则命题Q( ).  相似文献   

6.
这是一堂关于函数表达式的习题课,教学对象是高一学生.问题:已知f(2x+1)=x2-2x,求f(x)与f(2x-1)的解析式.学生解法:设f(x)=ax2+bx+c(a≠0),则f(2x+1)=4ax2+(4a+2b)x+a+b+c=x2-2x.易得4a=1,4a+2b=-2,a+b+c=0,解得a=14,b=-32,c=54,所以f(x)=14x2-32x+54,f(2x-1)=x2-4x+3.师:为什么可以"设f(x)=ax2+bx+c(a≠0)"?生1:因为可以推测f(x)一定是二次函数.如果f(x)不是二次函数,则f(2x+1)的解析式也不会是二  相似文献   

7.
本文介绍用构造法解代数题的几种方法 .一、构造方程 (组 )例 1 如果x3+ax2 +bx+ 8有两个因式x+ 1和x+ 2 ,则a +b的值是 (   )(A) 7   (B) 8   (C) 1 5   (D) 2 1( 2 0 0 2年湖北省武汉市初中数学竞赛 )解 设x3+ax2 +bx+ 8的另一个因式为x+c,则有x3+ax2 +bx+ 8=(x + 1 ) (x+ 2 ) (x+c)=x3+ (c+ 3 )x2 + ( 3c+ 2 )x+ 2c∴a=c+ 3 ,b=3c + 2 ,8=2c.∴a=7,b =1 4,c=4.从而有a+b =7+ 1 4=2 1 .二、构造函数例 2 设关于x的方程ax2 + (a + 2 )x+9a =0有两个不相等的实数根x1 、x2 ,且x1<1 相似文献   

8.
在文[1]里,笔者给出并证明了如下有趣的无理不等式: 问题 设a≥x>1,b≥y>1,c≥z>0,求证:(a+b+c)-(x +y+z)<√a2-x2+√b2-y2+√c2-z2≤√(a+b+c)2-(x+y+z)2.① 等号仅当a:x=b:y=c:z时成立. 下面给出不等式①的几个应用.  相似文献   

9.
一元二次方程是初中数学学习的重点.本文给出一元二次方程的两个性质,并举例说明其应用,供同学们学习参考.一、性质性质1:在一元二次方程ax2+bx+c=0 (a≠0)中,若a+b+c=0,则x1=1,x2=ca. 证明:由a+b+c=0,得b=-a-c.将其代入原方程,得ax2+(-a-c)x+c=0,即(x-1)(ax-c)=0.因此,x1=1,x2=ca. 下面是一个类似的性质:性质2:在一元二次方程ax2+bx+c=0 (a≠0)中,若b=a+c,则x1=-1,x2=-ca.(证明略)二、应用举例例1解下列方程:(1)8x2+15x-23=0;(2)5x2+11x+6=0. 解:(1)∵8+15-23=0,∴x1=1,x2=-238.(2)∵11=5+6,∴x1=-1,x2=-6…  相似文献   

10.
完全平方公式(a±b)~2=a~2±2ab+b~2.是整式运算中最重要的公式之一.在数学竞赛中它还能大显身手.例1 (2002年全国初中数学竞赛题)已知 a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式 a~2+b~2+c~2-ab-bc-ac 的值为().(A)0 (B)1 (C)2 (D)3  相似文献   

11.
大家知道,三角式asinx+bcosx=√a2+b2sin(x+ψ),其中tanψ=b/a,而|sin(x+ψ)|≤1,由此可知三角方程asinx+bcosx=c有解的充要条件是a2+b2≥c2,对于这个充要条件中等号何时成立,我们可做如下推导: ∵ a2+b2-c2=a2+b2-(asinx+bcosx)2=a2+b2-a2sin2x-2ab·sinxcosx-b2cos2x=a2(1-sin2x)-2absinxcosx+b2(1-cos2x)=b2sin2x-2absinxcosx+a2cos2x=(acosx-bsinx)2.∴当且仅当bsinx=acosx时a2+b2=c2成立.  相似文献   

12.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

13.
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的4个选项中,只有一项是符合题目要求的)1.设全集I=R,P={x|f(x)<0},Q={x|g(x)>0},且满足PQR,则集合M={x|f(x)≥0且g(x)≤0}等于()(A)CIP(B)CIQ(C)(D)CIP∪CIQ2.若函数y=loga(x+b)(a>0,a≠1)的图象过两点(-1,0)和(0,1),则()(A)a=2,b=2(B)a=2,b=2(C)a=2,b=1(D)a=2,b=23.a1,b1,c1,a2,b2,c2为非零实数,不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为M与N,那么a1a2=b1b2=c1c2是M=N的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既非充分条件也非必要条件4.…  相似文献   

14.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

15.
1 .若x是正整数 ,且 y =x4+ 2x3 + 2x2 + 2x + 1 ,则 (   ) .(A) y一定是完全平方数(B)存在有限个x ,使 y是完全平方数(C) y一定不是完全平方数(D)存在无限多个x ,使 y是完全平方数2 .当x -3 y+ 4z=1 ,2x+ y-2z =2时 ,化简x2 -2xy-3 y2 + 2xz+ 1 0 yz-8z2 的结果是 (   ) .(A) 1     (B) 0     (C) 2 -x     (D)x -23 .若a ,c ,d是整数 ,b是正整数 ,且满足a +b =c,b +c=d ,c +d =a,则a +b +c+d的最大值是 (   ) .(A) 0     (B) 1     (C) -1     (D) -54.若a2 + 2a + 5是a4+ma2 +n的一个因式 ,则mn的值…  相似文献   

16.
一、要注意分母的值不能为零例1(1997年山西省中考题)当x=时,分式(x-|3x)|(-x1+1)的值为零·解:由|x|-1=0,得x=1或x=-1;当x=-1时,分母(x-3)(x+1)=0,所以x=1时,上述分式的值为零·二、要注意不要盲目通分例2(1997年西宁市中考题)当a=3,b=2时,求代数式a+ba2+2ab+b2-ba22--abb2的值解:待求式=a+b(a+b)2+(a+b(ba)(-ab)-b)=a1+b+a+bb=a1++bb=33+2=3(2-3)·三、要注意运用换元技巧例3(1997年云南省中考题)1x2+3x+2+1x2+5x+6+x2+41x+3·解:因为原式=(x+1)1(x+2)+1(x+2)(x+3)+(x+3)1(x+1),所以设x+1=a,x+2=b,x+3=c,则原式=a1b+b1c+c1a=a+abbc+c=(x+1…  相似文献   

17.
一个不等式的再推广   总被引:1,自引:0,他引:1  
问题 :已知 a,b,c∈ R~+,则 a/(b + c)+ b/(a + c)+ c/(a + b)≥ 3/2文 [1 ]将其推广为 :设△ ABC的三边为 a,b,c,若 -1 <λ<1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥3λ + 2 ( 1 )本文将 ( 1 )式推广为 :命题 1 已知 a,b,c∈ R+,若 -2 <λ≤1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥ 3λ + 2 ( 2 )若λ=1时 ,( 2 )式显然成立 ,若λ∈ ( -2 ,1 )时 ,令x =λa + b + cy =λb + a + cz =λc+ a + b a =( y + z) - (λ+ 1 ) x( 1 -λ) (λ + 2 )b =( x + z) - (λ + 1 ) y( 1 -λ) (λ + 2 )c=( x + y) - (λ+ 1 ) z( 1 -λ)…  相似文献   

18.
因式分解作为一种运算技巧或解题方法,在解题中有着独特的作用.因此,我们学习因式分解之后,就要重视因式分解的应用.一、求值例1.已知a=120x+20,b=210x+19,c=210x+21,那么代数式a2+b2+c2-ab-bc-ac的值是(/).(A)4(B)3(C)2(D)1分析:直接求值计算量很大,如何利用公式化简代数式是解题的关键.解:原式=12(a2-2ab+b2+b2-2bc+c2+c2-2ac+a2)=12[(a-b)2+(b-c)2+(a-c)2].由a=120x+20,b=210x+19,c=210x+21可得a-b=1,b-c=-2,a-c=-1.∴原式=12[12+(-2)2+(-1)2]=21(1+4+1)=3.选(B).二、化简例1先化简x+1x2+x-2÷x-2+3x+2!",再求值,其中x=tan45°-cos30°…  相似文献   

19.
在x1+x2+…+xn=m中,令x1=mn+t1,x2=mn+t2,…,xn=mn+tn,其中t1+t2+…+tn=0,这就是均值换元法.如在x+y=a中,可令x=a2+t,y=2a-t.一、用均值换元法化简计算例1求值:√987×989×991×993+(993-989)(991-987).解令a=987+989+4991+993=990,∴原式可化为√(a-3)(a-1)(a+1)(a+3)+4×4=√(a2-1)(a2-9)+16.令b=(a2-1)+(a2-9)2=a2-5,∴√(a2-1)(a2-9)+16=√(b+4)(b-4)+16=b=a2-5=9902-5=980095.二、用均值换元法证明不等式例2已知a+b+c=3,求证:a2+b2+c2≥3.证明令a=1+t1,b=1+t2,c=1+t3,其中t1+t2+t3=0.∴a2+b2+c2=(1+t1)2+(1+t2)2+(1+t3)2=3+2(t1+t2+t3…  相似文献   

20.
在一元二次方程ax2+bx+c=0(a≠0、a、b、c为常数)中,当x=1时,a十b+c=0;反过来,当a+b+c=0时,就有x=1是方程ax2+bx+c=0的一个根. 由此类推到:如果am2+bm+c=0,an2+bn+c=0,且m≠n那么就知道m、n是一元  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号