首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2005年全国初二数学竞赛中有一个问题,从这个问题的解法中不难推出两个公式,下面给出推出的过程:问题已知(2x-3)7=a7x7+a6x6+…+a1x+a0.求代数式a1+a2+…+a7的值.解显然x=0时,有(-3)7=a0.(1)当x=1时,(-1)7=a7+a6+…+a1+a0.(2)(2)-(1)得:a1+a2+…+a7=(-1)7-(-3)7=2186.推广一下,我们不难求得:当x=-1时,(-5)7=-a7+a6-a5+a4-a3+a2-a1+a0.(3)(3)-(1)得:-a1+a2-a3+a4-a5+a6-a7=(-5)7-(-3)7=-75938.把指数推广到n,当(2x-3)n=a0+a1x+…+anxn时,则不难得出(-3)n=a0,(4)(-1)n=a0+a1+…+an,(5)(5)-(4)得:a1+a2+…+an=(-1)n-(-3)n,(-5)n=a0-a1+a2-…+(-…  相似文献   

2.
错在哪里     
同学们在平时解题过程中,喜欢拿到题就做,不注意审题,缺乏周密思考,往往出错还不知道错在哪里.下面就数列问题举例说明,以期引例起1大家的注意.已知有穷数列1,4,7,10,…,3n+7,其中后一项比前一项大3.(1)指出这个数列的通项公式.(2)指出1+4+7+…+(3n-5)是该数列的前几项之和.错解:(1)这个数列的通项公式为an=3n+7.(2)1+4+7+…+(3n-5)是该数列的前n项之和.错因:(1)若n=1,则a1=10≠1.显然3n+7不是它的通项.(2)该数列的通项不是3n-5,所以1+4+7+…+(3n-5)不是它的前n项之和.正解:(1)数列的第m项am=1+3(m-1)=3m-2,所以该数列的通项公式是am=3m-2(m…  相似文献   

3.
因式分解是一种重要的恒等变形,它的应用十分广泛.下面举例说明.例1 化简:(1-(1/2~2))(1-(1/3~2))(1-(1/4~2))…(1-(1/n~2)).解原式=(1-(1/2))(1+(1/2))(1-(1/3))(1+(1/3))(1-(1/4))(1+(1/4))…(1-(1/n))(1+(1/n))=(1/2)×(3/2)×(2/3)×(4/3)×(3/4)×(5/3)×…×((n-1)/n)×((n+1)/n)=(1/2)×((n+1)/n)=((n+1)/(2n)).  相似文献   

4.
全国统编教材高中数学第三册《数学归纳法》这一节,比过去传统教材改编得好,证题的内容丰富多采,形式多样。对于学生思维能力的培养,也给予了足够的重视。如在 1+3+5+……+(2n-1)=n~2 1+3+2+………………+n=1/2 n(n+1) 1~3+2~3+3~3+……+n~3=1/4 n~2(n+1)~2=(1+2+3+……+n)~2 1~2+2~2+3~2+……+n~2=1/3 n(n+1)(2n+1)等公式时,都配合直观图形,让学生从图形中观察到证题的结果,使学生在学习数学归纳法过程中,进一步领会这些例题、习题的求证,不仅仅是要按数学归纳法的两个步骤证明其正确性,而且还要引导学生对  相似文献   

5.
定理nn-1[(m+1)n-1n-1]<∑mi=11niαn-αn-1(α>1,n∈N,n≥2).证明由二项式定理得(α-1n)n=∑nr=0(-1)rCrn1nrαn-r,∵Crn(1n)r-Cr+1n(1n)r+1=Cr+1n(1n)r+1·nr+rn-r≥0,∴Crn(1n)r≥Cr+1n(1n)r+1(当且仅当r=0时等号成立).若n为偶数时,(α-1n)n=αn-αn-1+(C2n1n2αn-2-C3n1n3·αn-3)+…+(Cn-2n1nn-2α2-Cn-1n1nn-1α)+Cnn1nn>αn-αn-1;若n为奇数时,(α-1n)n=αn-αn-1+(C2n1n2αn-2-C3n1n3·αn-3)+…+(Cn-1n1nn-1α-Cnn1nn)>αn-αn-1.2定理的证明(1)∑m…  相似文献   

6.
数列求和一直是高考的热点,因此,正确快速求和就显得尤为重要.对于一般的等差乘等比数列常用错位相减法来求和. 例 求Cn=(2n-1)2n的前n项和. 解:由Sn=1×2+3×22+5×23+…+(2n-1)·2n,得2Sn=1×22+3×23+5×24+…+(2n-1)·2n+1. 两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)·2n+1.  相似文献   

7.
众所周知,等差数列{an}的通项公式an=a1+(n-1)d可变形写成:an=dn+(a1-d),这个式子的几何意义是点列An(n,an)(n∈N+)在直线y=dx+(a1-d)上.同样,等差数列{an}的前n项和公式sn=na1+n(n2-1)d可变形为:snn=a1+n-12d=2dn+(a1-2d),它也可看成是点列An(n,snn)在直线y=2dx+(a1-2d)上.于是得到以下两个结论:结论1等差数列{an}的通项公式an=a1+(n-1)d,则点(1,a1),(2,a2),(3,a3),…,(n,an)…共线.结论2等差数列{an}的前n项和sn=na1+n(n2-1)d,{sn}为等差数列的前n项和组成的数列,则点(1,s11),(2,s22),(3,s33),…,(n,snn)…共线.例1已知等差数列{an},a4=…  相似文献   

8.
组合恒等式证明问题,一般难度较大,学生往往不易掌握。下面就来谈谈组合恒等式证明的几种方法。 1.置换法。在公式(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…+C_n~ra~(n-r)b~r+…+C_n~nb~n中,适当地选择某个数来置换a和b,原恒等式即可得证。例1.求证:①2~n-C_n~12~(n-1)+C_n~22~(n-2)+…+(-1)~(n-1)C_n~(n-1)2+(-1)~n=1; ②3~n-C_n~13~(n-1)+C_n~23~(n-2)+…+(-1)~(n-1)C_n~(n-1)3+(-1)~n=2~n。  相似文献   

9.
数学解:设若干个连续奇数为2k+1,2k+3,……2k+(2n-1),(n≥2),其和为S,那么 S=(2k+1)+(2k+3)+……+(2k+2n-1)=1/2[2k+1)+(2k+2n-1)]n=(2k+n)n 即(2k+n)n=1981,而1981的约数只能是1,7,283,1981,于是,当n=7时,(2k+7)×7=1981,k=138。而当n=1,283,1981时,都不合题意。  相似文献   

10.
下面用数列知识解答二道物理问题.【例1】 A、B两点相距s,将s平分为n等分,今让一物体(可视为质点)从A点由静止开始向B做匀加速运动,但每过一个等分点,加速度都增加an,试求该物体到达B点的速度.解析:设物体经过第1,2,3,…,n段路程后的速度分别为v1,v2,v3,…,vn则有v21=2asn,v22-v21=2a(1+1n)sn,v23-v22=2a(1+2n)sn,……,v2n-v2n-1=2a(1+n-1n)sn,将上述各式两端分别相加后得v2n=2asn[1+(1+1n)+(1+2n)+……+(1+n-1n)]=2asn[n+(1n+2n+……+n-1n)].上式中的1n+2n+……+n-1n为一项数为n-1的等差数列的和,其和为1n[1+2+……+(n-1)]1n·1+(n-1)2…  相似文献   

11.
高中代数甲种本第二册P_(54)第14题的一个内容是“某等差数列{a_n}是前n项和的公式是S_n=5n~2+3n,求它的通项公式,”学生极易写出它的解答; a_n=S_n-S_(n-1) =5n~2+3n-[5(n-1)~2+3(n-1)] =8+10(n-1). 由于题目已肯定了{a_n}是等差数列,这样的题解也可算对了,然而下一题却需细心。例1 数列{b_n}的前n项和S_n=5n~2+3n+2,求它的通项公式。有的学生仿照上一题解,信手写出: “{b_n}的通项公式是  相似文献   

12.
等比数列前n项的求和公式的推论: (a-b)(a~(n-1)+a~(n-2b)+…+b~(n-1))=a~n-b~n以及它的特殊形式: (1-q)(1+q+q~2+…+q~(n-1))=1-q~n都是因式分解的重要公式,而因式分解则是解题(如求值,证明等)的重要手段,以下各例,可以说明。例1 分解因式X~(12)+x~9+x~6+x~3+1(1978年全国数学竞赛决赛题) =(x~4+x~3+x~2+x+1) (x~8-x~7+x~5-x~4+x~3-x+1) 例2 已知ω=e~((2π/5)i),求1+ω~4+ω~8+ω~(12)+ω~(16)之值。解原式=((1-ω~4)(1+ω~4+ω~8+ω~(12)+ω~(16))/1-ω~4 =(1-ω~(20))/(1-ω~4)=(1-(ω~5)~4)/(1-ω~4) ∵ω~5=(e~((2π/5)i))~5=e~(2πi)=1 ω~4=e~((8/5)πi)≠1 ∴原式=0 例3 求能使2~n-1被7整除的所有正整数n。(第六届国际数学竞赛题) 解分二种情况讨论。 (1)如果n是3的倍数,我们设n=3k(k为正整数),这时  相似文献   

13.
本文向高一同学介绍数列求和的常用方法. 1.错位相减例1 Sn=1+3x+5x2+7x3+…+ (2n-1)xn-1(x≠1) 分析由题可知,{(2n-1)xn-1}的通项是等差数列{2n-1}的通项与等比数列{xn-1}的通项之积,符合错位相减法的特征,可通过错位相减转化为等比数列的求和来解决. 设Sn=1+3x+5x2+7x3+…+ (2n-1)xn-1(x≠1) ①则xSn =x+3x2+5x3+7x4+…+(2n-1)xn ②由①-②,得  相似文献   

14.
<正>求数列通项在高考中属于常考内容,本文归纳整理了几种方法,供参考.一、已知a_1和a_n=a_(n-1)+f(n)型,其中f(n)可求和例1已知数列{a_n}满足a_(n+1)=a_n+3n+2,且a_1=2,求a_n.解由a_(n+1)=a_n+3n+2知a_(n+1)-a_n=3n+2,a_n-a_(n-1)=3n-1.a_n=(a_n-a_(n-1))+(a_(n-1)-a_(n-2))+…+(a_2-a_1)+a_1=(3n-1)+(3n-4)+……+5+2  相似文献   

15.
据说著名的数学家高斯,9岁时就能用巧妙的方法速算1+2+3……+100。这种方法叫倒写相加法,现在我们用这种方法来计算1+2+3+……+n。令a=1+2+3+……+n=n+(n-1)+(n-2)+……+1两式相加,得2a=(1+n)+[2+(n-1)]+[3+(n-2)]+……+(n+1)=n(n+1)∴a=12n(n+1)你一定会为高斯这种妙算拍案叫绝!惊叹之余,你是否想过还能找出什么简便方法来计算1+2+3+……+n吗?方法一:a=1+2+3+……+n=[n-(n-1)]+[n-(n-2)]+[n-(n-3)]+……+(n-0)=n·n-[(n-1)+(n-2)+(n-3)+……+0]=n2-(a-n)解方程a=n2-(a-n),得a=12n(n+1)方法二:注意到任一自然数k都能写成k=12[k(k+1)-(k-1)k]…  相似文献   

16.
本文介绍一类不等式的证明方法。这种证法简洁,有章可循。下面举例说明: [例1] 证明不等式 1/2·3/4…(2n-1)/2n<1/((2n+1)~(1/2))。证明:令S_n=1/((2n+1)~(1/2))则 S_(n-1)=1/((2n+1)~(1/2)) ∵ S_n/S_(n-1)=((2n-1)~(1/2))/((2n+1)~(1/2))=(2n-1)/((4n~2-1)~(1/2))>(2n-1)/2n。(n≥2) 而S_1=1/(3~(1/2))>1/2。故:1/2·3/4…(2n-1)/(2n)相似文献   

17.
阅读了本刊第9期时玉同学撰写的《从2开始,n个连续偶数的和等于多少?》一文很受启发.用正方形的面积直观地表示公式1+3 +5+…+(2n-1)=n~2和2+4+6+…+2n=n(n+1)的内在规律,既增加趣味性,又能帮助同学理解和记忆.本文也提供一个自然数的立方和公式的无字的几何证明,并例举公式的应用.供大家参考.  相似文献   

18.
现行高中代数(下册)封面上醒目地给出等式1~2+2~2+3~2+…+n~2=1/6n(n+1)(2n+1)。又在第47页练习和第124页习题上相继出现1+2+3+…+n=1/2n(n+1)与1~3+2~3+3~3+…+n~3=1/4n~2(n+1)~2的求证式。这些结论之间是否存在相关性?下面作出了肯定的回答。  相似文献   

19.
一本杂志上刊登过如下一道题目: 题一:设,f(x)=(x~2-4)~(1/2)(x≤-2).(1)求f~(-1)(x);(2)设a_1=1,a_n=f~(-1)(a_(n-1))(n≥2,n∈N),求a_n;(3)求sum from i=1 to n 1/(a_1+a_i+1)的值该题作为函数与数列的综合题在教学中广为流传,通常简解如下解:(1)函数,f(x)=(x~2-4)~(1/2)(定义域为x≤—2,值域为y≥0)的反函数为f~(-1)(x)=-(x~2+4)~(1/2)(定义域为x≥0,值域为y≤-2) (2)∵a_1=1,a_n=f~(-1)(a_(n-1))由迭代法得:a_n=-(a_(n-1)~2+4)~(1/2)=-(a_(n-2)~2+2×4)~(1/2)=…=-(a_1~2+(n-1)4)~(1/2)=-(4n-3)~(1/2)(亦可由a_n~2=a_(n-1)~2+4,n=2,3,…n,累加而得) (3) 注意到 a_n~2-a_(n-1)~2=4,  相似文献   

20.
先看2004年一道高考数学题:已知数列an的前n项和Sn满足Sn=2an+(-1)n(n≥1).(1)写出数列an的前三项a1,a2,a3;(2)求数列an的通项公式;(3)证明:对于任意的整数m>4,都有1/a4+1/a5+…+1/am<87.这是一道涉及探求递推数列的通项公式,特殊数列求和,放缩法证明不等式的题目,有较强的综合性.下面我们主要分析第(3)题.分析1由(1)、(2)可知:an=3/2[2n-2+(-1)n-1](n≥1),从而要证明的不等式可化为:2/1+6/1+1/10+…+3/2·2/(m-3)+(1-1)m-2+2/3·2m-2+(1-1)m-1<7/8.显然该不等式左边无法直接求和,此时应先对左边每一项进行放大变形,然后再求和.但考虑到左…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号