首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>1.知识具备x2≥0→(a-b)2≥0→a2+b2-2ab≥0,即:(1)a2+b2≥2ab,注意乘积为定值,平方和有最小值,当且仅当a=b时取等号.(2)ab≤a2+b22,注意平方和为定值,乘积有最大值,当且仅当a=b时取等号.若a、b∈R+,则有:(3)a+b≥2 ab%姨,乘积为定值,和有最小值,当且仅当a=b时取等号.(4)ab≤(a+b2)2,和为定值,乘积有最大值,当且仅当a=b  相似文献   

2.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

3.
本文介绍的勾股不等式的证明很简单,它在应用中却很方便。命题若a≥0,b≥0,c≥0,且a~2+b~2=c~2,则 a+b≤2~(1/2)c (1) 当且仅当a=b时取等号。证明据题设,利用a~2+b~2≥2ab,得 (a+b)~2=a~2+b~2+2ab≤2(a~2+b~2)=2c~2 ∴ a+b≤2~(1/2)c 显然,当且仅当a=b时等号成立。(证毕) 当a,b,c均为正实数时,由a~2+b~2=c~2知a,b,c组成一个直角三角形的三边,故称(1)为勾股不等式。  相似文献   

4.
<正>在学习过程中,同学们会经常遇到不等式问题,经过归纳总结以及分析感悟,我觉得对于高中阶段的不等式问题,只要掌握了基本不等式的性质及解法,其他问题都会迎刃而解。1.基本不等式:(1)a,b∈R时,a2+b2+b2≥2ab,当且仅当a=b时取等号;其等价形式ab≤a2≥2ab,当且仅当a=b时取等号;其等价形式ab≤a2+b2+b2/2,当且仅当a=b时取等号。  相似文献   

5.
《数学通报》2010年第8期问题1869如下: 问题1869[1]设a,b>0. (Ⅰ)若a+b≤√2,则1/1+a2++1/1+ b2≥1/1+(a+b)2 (1) 当且仅当a=b=√2/2时等号成立; (Ⅱ)若ab≥1/2,则1/1+a2++1/1+ b2≤1/1+(a+b)2 (2) 当且仅当a=b=√2/2时等号成立.  相似文献   

6.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

7.
基本不等式(a+b2 ≥ ab)成立的前提条件是a>0,b>0,常用变形式有(a+b≥2ab和ab≤(a+b2 )2),取等号的条件是当且仅当a=b.在求解有关代数式或函数的最小值问题时,若能灵活运用基本不等式及其变式,往往可获得巧思妙解.  相似文献   

8.
基本不等式设a≥0,b≥0,则a+b/2≥√ab(当且仅当a=b时等号成立).最值原理设x>0,y>0.(1)若x+y=S(定值),则当且仅当x=y时,xy取得最大值S2/4;(2)若xy=P(定值),则当且仅当x=y时,x+y取得最大值2√P.  相似文献   

9.
高中教材中的基本不等式(a b)/2≥ab~(1/ab)(a≥0,b≥0)是证明不等式时经常要用到的,取等号的条件是“a=b”,我们称之为“元等”。若对于a b=p(定值)当且仅当a=b=p/2(定值)时,ab~(1/ab)才取得最大值。利用这一结论,我们可以证明一类不等式:  相似文献   

10.
<正>本文先给出基本不等式的一个等价变形,再举例说明它的广泛应用.结论已知a、b、λ∈R,且b(a+b)> 0,则有ab≥-λ2+(λ+1)2+(λ+1)2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2+λ2+λ2b2b2≥2λab,得a2≥2λab,得a2≥2λab-λ2≥2λab-λ2b2b2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2b].再两边同时  相似文献   

11.
一、均值不等式1.如果a,b∈R ,那么a2 b≥ab,当且仅当a=b时取等号.即若ab为定值时,当且仅当a=b时,a b有最小值2ab;若a b为定值时,当且仅当a=b时,ab有最大值a b22.2.如果a,b,c∈R ,那么a 3b c≥3abc,当且仅当a=b=c时取等号.即若abc为定值时,当且仅当a=b=c时,a b c有最小值33abc;  相似文献   

12.
几个重要不等式的应用技巧   总被引:1,自引:0,他引:1  
从实际教学中发现 ,许多同学对现行高中代数第五章“不等式”的深入理解、掌握往往有一定的难度 ,下面就结合教学实际对四个重要不等式 :a2 b2 ≥ 2 ab(a,b∈ R当且仅当 a =b时取等号 ) ;a b2 ≥ ab (a,b∈ R 当且仅当 a =b时取等号 ) ;a3 b3 c3≥ 3abc(a,b,c∈ R 当且仅当 a =b =c时取等号 ) ;a b c3 ≥ 3 abc(a,b,c∈ R 当且仅当 a =b =c时取等号 )的应用技巧作一初步探讨。1 累用——重复使用并累加例 1 已知 a、b∈ R,求证 :a2 b2 1≥ a b ab分析 本题形如 :a2 b2 c2≥ ac bc ab(a,b,c∈ R)所以只需…  相似文献   

13.
有些问题利用不等式取等号的条件很容易获得解决。我们先列出几个常见的不等式,然后举例说明之。①a_1 a_2 … a_n/n≥(a_1a_2…a_n)~(1/2),(a_i∈R~ ,i=1,2,…,n)当且仅当a_1=a_2=…=a_n时取等号。② a~2 b~2 c~2≥ab bc ca,(a,b,c∈R)当且仅当a=b=c时取等号。③ a_i,b_i∈R,=1,2,…,n,a_1b_1 a_2b_2 … a_nb_n≤(a_1~2 a_2~2 … a_n~2)(b_1~2 b_2~2 … b_n~2)当且仅当a_1/b_1=a_2/b_2=…=a_n/b_n时取等号。④ |a±b|≤|a| |b|,(a,b∈R)上式中取加号时不等式取等号的充要条件为ab≥0;取减号时,当且仅当ab≤0时取等号例1 如果四边形ABCD的边a,b,c,d满足a~4 b~4 c~4 d~4=4abcd,试判断四边形ABCD的形状。解据不等式①得 a~4 b~4 c~4 d~4≥  相似文献   

14.
正基本不等式:1/2(ab)≤(a+b)/2(其中a≥0,b≥0)当且仅当a=b时等号成立,当1/2(ab)=(a+b)/2,此时即1/2(1/2a-1/2b)2=0,可看出a=b.a=b一方面可看作不等式成立的特殊情况,另一方面也可看作恒等式成立的条件.基本不等式等号成立的条件有两个:①两数非负,②两数相等,这就说明基本不等式等号成立对条件有着较强的要求.反过来如果基本  相似文献   

15.
不等式a~2 b~2≥2ab成立的条件是:a,b∈R,当且仅当a=b时等号成立。又当a,b∈R_ 时有:a b≥2(1/ab),当且仅当a=b时等号成立。本文将介绍其变形在解题中的应用。  相似文献   

16.
1简单结论 若a,b均为正数,则有 a3 +b3≥a2b+ab2.(1) 这是一道容易的试题,只要作差即可得证,证明过程如下: a3 +b3-a2b-ab2 =(a2-b2)(a-b) =(a+b)(a-b)2≥0. 当且仅当a=b时上述等号成立.我们把它称为结论(1). 2精彩应用 案例1 (2017年高考全国Ⅱ卷文科数学试题)已知a>0,b>0,a3 +b3 =2,证明:a+b≤2.  相似文献   

17.
人教版必修五给出了基本不等式a+b/2≥√ab(a>0,b>0),当且仅当a=b时取等号。其变形有:(a+b/2)^2≥ab;a^2+b^2≥1/2(a+b)^2。  相似文献   

18.
若正数 a、b 满足 ab=a b 3,则 ab 的取值范围是(1999年高考理科第(17)题).下面给出此题的六种解法,供参考.解法1 因为 ab=a b 3,a>0,b>0,所以(a-1)b=a 3.且 a-1>0,所以 b=(a 3)/(a-1).ab=(a~2 3a)/(a-1)=(a-1) 4/(a-1) 5≥2 4~(1/2) 5=9.当且仅当 a-1=4/(a-1)即 a=3时取等号.  相似文献   

19.
<正>由完全平方公式(a-b)2=a2-2ab+b2的非负性,易得它的延伸公式:a2+b2≥2ab(当且仅当a≡b时取等号).这个不等式在求最小值、最大值等问题中有着特殊的应用.现举例如下:  相似文献   

20.
众所周知,a+b=2A=a,A,b成等差数列,其中A叫做a和b的等差中项.由不等式的基本性质及基本不等式,不难得到如下若干性质:(证明较简单,略.) (1)当a+b=2A时,可设a=A-d,b=A+d; (2)A≥ab~(1/ab);(a,b∈R+,当且仅当a=b时取等号.) (3)1/A2≤1/ab;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号