共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine
INTRODUCTIONWiththeworldfacingseriouspollutionofen vironmentandinevitabledecliningresourcesofenergy,thedevelopmentoflowerpollutionandlowerenergyconsumptionautomobilehasbe comeamajorresearchtarget.Thehighefficien cyandlowpollutionnaturalgas dieseldualfue… 相似文献
2.
Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CNG)/diesel dual fuel engine (DFE) was one of the best solutions for the above problems at present. In order to study and improve the emission performance of CNG/diesel DFE, an emission model for DFE based on radial basis function (RBF) neural network was developed which was a black-box input-output training data model not require priori knowledge. The RBF centers and the connected weights could be selected automatically according to the distribution of the training data in input-output space and the given approximating error. Studies showed that the predicted results accorded well with the experimental data over a large range of operating conditions from low load to high load. The developed emissions model based on the RBF neural network could be used to successfully predict and optimize the emissions performance of DFE. And the effect of the DFE main performance parameters, such as rotation speed, load, pilot quantity and injection timing, were also predicted by means of this model. In resume, an emission prediction model for CNG/diesel DFE based on RBF neural network was built for analyzing the effect of the main performance parameters on the CO, NOx emissions of DFE. The predicted results agreed quite well with the traditional emissions model, which indicated that the model had certain application value, although it still has some limitations, because of its high dependence on the quantity of the experimental sample data. 相似文献
3.
INTRODUCTION The use of dimethyl ether (DME) as an alterna-tive fuel appears to be a promising approach for si-multaneously minimizing NOx and soot emissionfrom conventional diesel engines. The lowself-ignition temperature of 508 K and the high oxy-gen content of 34.8 percent (mass fraction) are twomajor factors characterizing low soot and unburnedtotal hydrocarbon (THC) emissions. Since the firstintroduction of the concept by Sorenson and Mik-kelsen (19… 相似文献
4.
为了研究供热管网泄漏检测策略,利用图论理论构建了一个基于空间管网的泄漏工况水力计算数学模型,得出节点泄漏和管段泄漏工况下管网各点的压力变化情况.然后,采用人工神经网络方法建立了一个基于BP神经网络的供热管网泄漏诊断系统.该诊断系统可根据管网中压力监测点的压力变化定位泄漏管段,实现对泄漏点位置的初步估计.最后,通过实例验证了该方法的有效性.实验结果表明,这种诊断系统对泄漏管段的预测准确率达到100%. 相似文献
5.
BP神经网络在数字识别中的应用 总被引:1,自引:0,他引:1
曹鸿霞 《湖北广播电视大学学报》2006,23(6):174-176
神经网络(neuralnetwork)是近年来再度兴起的一个高科技研究领域,数字识别就是其中一项既基本又非常重要的应用性研究领域。BP神经网络(Back-Propagation),又称误差反向传递神经网络,是一种依靠反馈值来不断调整节点之间的连接权值而构建的一种网络模型。BP网络可以看作是对多层感知器网络的扩展,即信息的正向传播及误差数据的反向传递。本文给出了设计用于识别手写数字BP神经网络的过程。 相似文献
6.
本文对本世纪80年代中期兴起并紧密结合现代科学技术进步的一门新兴学科--模糊神经网络进行了综述,分析了所取得的主要成果及其特点,并指出了今后模糊神经网络研究中有待解决的许多问题.针对这些问题,介绍了笔者的工作--模糊逼近神经网络摄动系统,对开展模糊神经网络的研究将具有启迪作用和现实意义. 相似文献
7.
8.
为了提高大坝变形分析模型的预测精度并检验模型的泛化能力,研究了大坝变形分析的BP神经网络模型,并基于神经网络BP算法和传统的统计模型建立了大坝变形分析的融合模型.结合陈村大坝多年的变形观测数据,对上述3种模型进行了试算及分析.分析结果表明,统计模型的平均预测精度为±0.477mm.BP神经网络模型的平均预测精度为±0.390mm,融合模型的平均预测精度为±0.318mm,相比统计模型和BP神经网络模型分别提高了33%和18%,且泛化能力较强,具有广泛的适用性. 相似文献
9.
就BP神经网络应用设计中的网络隐含层数、隐含层神经元个数等具体设计问题进行了研究与探讨,提出一种新的构建BP神经网络模型方法。实验表明,使用该方法构建的网络模型训练曲面图形时,得到的网络输出曲面与原样本曲面非常接近,训练误差满足设定要求。 相似文献
10.
王洪亮 《石家庄职业技术学院学报》2014,(2):24-26
针对当前在标准行驶工况下开发的混合动力电动汽车优化控制策略不能根据变化的行驶工况动态调整控制策略的问题,提出一种基于模糊神经网络的混合动力电动汽车动态能量管理策略:先利用模糊神经网络进行工况识别,然后根据识别的工况类型动态调整自身控制参数.仿真实验显示,该策略可以有效提高混合动力汽车的燃油消耗,并降低污染物的排放量. 相似文献
11.
12.
利用MATLAB编程软件,分别建立BP神经网络和AR模型,采用全国出生率,死亡率,老年抚养率等9个指标作为样本,分别对BP网络和AR模型进行训练,预测5年后的人口数量.结果表明这两种方法预测人口均是可行的,效果较好,误差很小,但是AR模型较适合线性预测,而BP网络适合较非线性预测. 相似文献
13.
14.
分析了高校人力资源的特点,结合已有的人力资源评估模型,提出了用改进的BP神经网络的方法对高校人力资源进行定量分析的算法,为高校人力资源评估提供一定的理论支持和实践参考. 相似文献
15.
郑伟花 《南阳师范学院学报》2012,11(9):41-44
检测混凝土结构缺陷一般采用超声无损检测方法,传统的概率法在后期处理时有其自身的缺点.为了克服这些缺点,提出了采用蚁群优化算法与BP神经网络融合的方法进行后期处理,建立蚁群神经网络的数学模型,实现了蚁群神经网络的训练,并通过实例验证了该方法的有效性. 相似文献
16.
1 Introduction Modelingofsoilbehaviourplaysanimportantroleindealingwithproblemsrelatedtosoilmechanicsandfoundationengineering .Overthepastfourdecades ,manyresearchershavedevotedenormouseffortstoforecastingtheliquefactionofsaturatedsoilundervariousassum… 相似文献
17.
18.
利用2003年至2010年黄冈市区人均地区生产总值、房地产开发投资、城镇居民人均住房使用面积等相关数据,根据人工神经网络BP算法,预测出2011年和2012年黄冈市区房价,与已经公布的这两年房价数据比较,符合预期误差范围。在此基础上,预测出2013年的房价,可以看出黄冈市区房价总体保持增长趋势,结合预测结果,给出合理化的解释。 相似文献
19.
PENG Li ming MAO Xie min XU Kuang di 《上海大学学报(英文版)》1999,3(4):313-317
1 Introduction Withtheincreaseofrequirementsformaterialpropertiesinindustryapplications,suchmaterialswithanisotropicmicrostructuresgetexpansiveapplicotioninindustry[1,2].Directionalsolidificationmicrostructureisoneofthesetypesofmaterials,whichinclud… 相似文献
20.
A new neural network model termed 'standard neural network model' (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constraints are shown to be a set of linear matrix inequalities (LMIs), which can be easily solved by the MATLAB LMI Control Toolbox to determine the control law. Most recurrent neural networks (including the chaotic neural network) and nonlinear systems modeled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be stabilization controllers synthesized in the framework of a unified SNNM. Finally, three numerical examples are provided to illustrate the design developed in this paper. 相似文献