共查询到20条相似文献,搜索用时 15 毫秒
1.
求异面直线的距离 ,就是要确定它们的公垂线段 ,然后再利用解三角形来完成 .但在有些情况下公垂线段难以确定 ,此时若能运用化归思想对问题进行适当转化 ,不仅可以简化运算 ,而且思路也非常简捷、明快 .下面就几种常用的转化方法举例说明 .1 转化为线面距离若m、n是两条异面直线 ,当m 平面α且n∥平面α时 ,直线n与平面α间的距离也就是异面直线m与n之距离 . 图 1例 1 S为直角梯形ABCD所在平面外一点 ,∠DAB=∠ABC =90° ,SA⊥面AC ,SA =AB =BC =a ,AD =2a .(1)求异面直线SC与AB间的距离 ;… 相似文献
2.
3.
4.
5.
成英才 《数学学习与研究(教研版)》2010,(7):85-85
用向量法求空间距离,对“线面距离”“面面距离”都可以化归为“点面距离”来解决,那么如何用向量法求异面直线的距离呢?我们通过下面例子来看一些方法。 相似文献
6.
7.
赵红玲 《成都教育学院学报》2005,19(10):118-119
求两条异面直线间的距离的方法有很多,但用逼近思想方法给出其公式可能还是第一次;它的优点是可以不找到公垂线的情况下求得它们间的距离,具有实践意义. 相似文献
8.
9.
求解异面直线问的距离,是立体几何中的难点之一,不少同学一见到这类问题,就企图寻求公垂线来解.其实,这类问题的不少情形是不易作出公垂线的,有时即使找到了也不易计算.笔者在此介绍几种转化的处理方法. 相似文献
10.
问题:如何求两异面直线a、6的距离?对于求异面直线间的距离,考纲中只要求会计算已给出(或容易作出)公垂线时的距离。下面介绍两种“不”特殊情形,贵在转化的思维方法渗透,提高解决异面直线距离问题能力。 相似文献
11.
12.
求两条异面直线的距离,这是中学立体几何教学的一个难点,克服难点的关键是师生熟读,理解异面直线的距离一节的内容(含例题、习题).本文通过一道例题的多种解法,介绍应用向量求两条异面直线的距离——公垂线段的长度,或者转化求点面的距离. 相似文献
13.
空间七大距离:点点、点面、电线、线线、线面、面面距离是高中数学的一个难点.它们之间既有区别又相互联系.而两异面直线的距离又是难点中的难点.其难就在于两异面直线的公垂线需满足:①和两异面直线都垂直。②和两异面直线都相交.因此,若能突破求异面直线距离这个难点.其它距离问题便可迎刃而解. 相似文献
14.
1 问题的引出 求异面直线的距离是立体几何教学中的一个难点,究其原因,主要是高中《立体几何》教材在引入异面直线距离时,通过观察正方体的 相似文献
15.
16.
求异面直线之间的距离是立体儿何重、难点之一.常有直接法和转化法:直接法是利用图形性质,直接找出该公垂线,然后求解.转化法是通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转化为求一元二次函数的最值问题,或用等体积变换的方法来解. 相似文献
17.
立体几何是高中数学内容的一部分,通过对它的教学,可以培养学生的空间想象力和逻辑推理能力。我在立体几何的教学中,深切地体会到,求两条异面直线之间的距离,既是重点,又是难点。怎样求异面直线间的距离呢?本文拟对一道求异面直线距离的题目给出三种不同的解法来探讨求异面直线间距离的方法,以收抛砖引玉之效。题目:已知正方体ABCD—A'B'C'D'的棱长为1,求直线DA'与AC的距离(如图1)分析一:显然,直线DA'与AC是异面直线,此题就是求两条异面直线间的距离,关键是找出DA'与AC的公垂线。取AD的中点G,连结AC,BD交于… 相似文献
18.
19.
20.