首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于求函数y=x a/x b(a>0,a、b均为常数)的最值,当x>0时,可利用均值不等式求其最值,当条件不具备时,可利用函数y= x a/x b的单调性求最值.我们利用函数单调性定义或导数知识可知该函数在(-∞,-a~(1/2)]与[a~(1/2), ∞)上为增函数,在[-a~(1/2),0)与(0,a~(1/2)]上为减函数,该数学模型渗透在多种求函数的最值问题之中,在高考题中较为多见,下面  相似文献   

2.
命题1当a>0,b>0时,函数f(x)=ax-(b/x)在区间(-∞,0)U(0, ∞)上是增函数.证明:设x_1,x_2∈(0 ∞),且x_1>x_2,则f(x_1)-f(x_2)=ax_1-(b/(x_1))-  相似文献   

3.
关于函数y=x p/x(p≠0)的单调性,有如下两个结论: Ⅰ.函数y=x p/x(p>0)在区间[-p~(1/2),0)或(0,p~(1/2)]上单调递减;在区间(-∞,-p~(1/2)]或[p~(1/2), ∞)上单调递增。 Ⅱ.函数y=x-p/x(p>0)在区间(-∞,0)或(0, ∞)上单调递增。  相似文献   

4.
问题已知f(x)的值域是(-5,-12],求y=1f(x)的值域.探究因为y=f(1x)在(-∞,0),(0, ∞)上都是单调递减函数,由题意知-5f(1x)≥-2,所以y=f(1x)的值域为[-2,-51).反思升华1若改变f(x)的值域为[12,5),求y=f(1x)的值域.探究因为y=f(1x)在(0, ∞)上是单调递减函数,由21≤f(x)<5,可得2≥f(1x)>51,所以y=1f(x)的值域为(51,2].反思升华2又若改变f(x)的值域为(-5,12],求y=f(1x)的值域.探究1因为f(x)∈(-5,21]不是y=f(1x)的单调区间,所以必须把f(x)的范围分成(-5,0),{0},(0,21].当f(x)=0时,y=f(1x)无意义(舍去);当f(x)∈(-5,0)时,f(…  相似文献   

5.
一、试题呈现设函数f(x)=x2+2ax+a,若函数f(x)与函数f[f(x)]的值域相同,则实数a的取值范围为.第一步:分析f(x)的单调性与最值,易知f(x)在(-∞,-a)上递减,在(-a,+∞)上递增,f(x)min=f(-a)=a-a2,∴f(x)的值域是[a-a2,+∞).第二步:换元分析两函数.设t=f(x),则f[f(x)]=f(t),函数f(t)在t∈(-∞,-a)上递减,在t∈(-a,+∞)上递增,则y=f(t)(t≥a-a2)的值域也是[a-a2,+∞).  相似文献   

6.
文[1]给出了求函数f(x)=√ax √b d-cx的值域的定理. 定理设f1(x)=ax b,f2(x)=d-cx(a、c>0,(d/c)>-(b/a)),则函数f(x)=√ax b √d-cx的值域是[√[f1(x) f2(x)]min, √f1((d/c)) f2(-(b/a))].  相似文献   

7.
二次复合函数单调性是高考的热点之一,但求解中对复合函数单调性的判定方法:“由里到外,同增异减”的理解和应用误区颇多,本文举一例说明求二次复合函数单调区间的错因及正确解法.题目函数 f(x)=(x-1)~2 2,g(x)=x~2-1,求函数 y=f[g(x)]的单调区间.错解1 因为函数 f(x)=(x-1)~2 2在(1, ∞)上单调递增,在(-∞,1)上单调递减;函数 g(x)=x~2-1在(-∞,0)上单调递减,在  相似文献   

8.
一、忽视函数单调性的概念致错例1(北京卷)已知f(x)=(3a-1)x 4a,x<1logax,x≥"1是(-∞, ∞)上的减函数,那么a的取值范围是().A.(0,1)B.(0,31)C.[71,31)D.[17,1)错解因为f(x)在(-∞, ∞)上是减函数,所以f(x)在(-∞,1)和(1, ∞)上是减函数,于是3a-1<0且0相似文献   

9.
二次函数f(x)=ax~2 bx C(a、b、C∈R,a≠0)有两个重要性质: (1)f(x)的图象有唯一的对称轴x=-(b/2a),且在对称轴左、右两侧对应的区间(-∞,-(b/2a)]与[-(b/2a) ∞)上,f(x)具有相反的单调性;  相似文献   

10.
对于广义积分integral from n=0 to ∞ dm/dx~m(1/1 x~2)d~n/dx~n(1/1 x~2)dx和integral from n=0 to ∞ d~m/dx~m(sin x/x)d~n/dx~n(sin x/x)dx(m,n为非负整数),采用Fourier变换及级数计算出它们的值,并指出在区间(-∞, ∞)上可积的函数f(x),亦可仿此计算广义积分integral from n=0 to ∞ f~(m)(x)f~(n)(x)dx.  相似文献   

11.
一、选择题(每小题6分,共6 0分)1.已知y =f(x)是定义在R上的偶函数,当x>0时,f(x) =log2 (1 x) .那么,当x <0时,f(x) =(  ) .(A)log2 (1 x)    (B)log2 (1-x)(C)log2 (- 1 x) (D)log2 (- 1-x)2 .若p、q为实数,则函数f(x) =x3 px2 qx r(  ) .(A)在(-∞, ∞)上是减函数(B)在(-∞, ∞)上是增函数(C)当p2 <3q时,在(-∞, ∞)上是增函数(D)当p2 >3q时,在(-∞, ∞)上是增函数3.已知α、β均为锐角,cos(α β) =- 45 .若设sinβ=x ,cosα=y ,则y与x的函数关系式为(  ) .(A)y =- 45 1-x2 35 x (0 相似文献   

12.
一、忽视定义域致错例1求函数y=x-(1-2x)~(1/2)的值域.错解由y=x-(1-2x)~(1/2)得X~2 (1-y)x y~2-1=0.因为关于x的二次方程恒有实根,所以有△=[2(1-y)]-4 (y~2-1)≥0,解得y≤1.故函数的值域为(-∞,1).剖析△=[2(1-y)]~2-4(y~2-1)≥0只能保证方程x~2 2(1-y)x y~2-1=0在整个R上有实根,而不能保证在(-∞,1/2](函数的定义域)上也有实根.  相似文献   

13.
函数不仅是高中数学的核心,而且是学习高等数学的基础.函数的定义域则是研究函数的基础,是考核数学素质的主要阵地.【例1】函数f(2x-1)的定义域是[0,1],求f(1-3x)的定义域.解:f(2x-1)的定义域是[0,1],即0≤x≤1,于是-1≤2x-1≤1,所以函数f(t)的定义域是[-1,1]令-1≤1-3x≤1,得0≤x≤23即f(1-3x)的定义域是[0,23]点评:函数f(2x-1)的定义域是指x的取值范围,而非(2x-1)的值域【例2】求函数f(x)=2-x 3x 1的定义域.解:由2-x 3x 1≥0x-1x 1≥0x<-1或x≥1∴f(x)的定义域为(-∞,-1)∪[1, ∞)【例3】已知y=f(x)的定义域为[0,1],求y=f(lnx)的定义域.解…  相似文献   

14.
众所周知,我们可以说“函数f(x)=1/x在(-∞,0)上是减函数”,也可以说“函数f(x)=1/x在(0,+∞)上是减函数”,但不可以说“函数f(x)=1/x在(-∞,0)U(O,+∞)上是减函数”.  相似文献   

15.
1利用概念教学,渗透逆向思维例1已知函数f(x)=(m-1)x~2- mx 2是偶函数,比较f(0.75)与f(a~2-a 1)的大小.解:由f(x)=(m-1)x~2-mx 2,得f(-x)=(m-1)x~2 mx 2.又f(x)为偶函数,所以(m-1)x~2-mx 2:(m-1)x~2 mx 2,则m=0,所以f(x)= -x~2 2.所以f(x)在[0, ∞)上为减函数.又a~2-a 1=(a-0.5)~2 0.75≥0.75,所以f(0.75)≥f(a~2-a 1).  相似文献   

16.
一、选择题1 .函数 f(x) =x2x -1 (x∈R且x≠ 1 )的单调递增区间是 (   ) .A .( -∞ ,0 ]和 [2 , ∞ )    B .( -∞ ,0 ]C .( -∞ ,1 -2 ]和 [2 , ∞ )D .[2 , ∞ )2 .函数 f(x)与 g(x)有相同的奇偶性 ,对定义域中的任何x ,都有 f(x) f( -x) =0 ,g(x)·g( -x)=1 ,且当x≠ 0时 ,g(x)≠ 1 ,则F(x) =2f(x)g(x) -1 f(x) (   ) .A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数也是偶函数D .既不是奇函数也不是偶函数3 .函数y =x 4 -3x -5 的值域是 (   ) .A .( -∞ ,0 )∪ ( 0 , ∞ ) B .( 0 , ∞ )C .( 0 ,13 ]D …  相似文献   

17.
函数是中学教学中的重点内容之一 .由于函数的值域在教材中阐述其求法甚微 ,因而有不少的同学在求函数的值域时 ,无从着手 .为了帮助同学们在求值域时有一套较系统的方法 ,在这里归纳几种常用方法 ,供读者参考 .1 反函数法如函数 y =f (x)有反函数 ,则 y =f -1 (x)的定义域也就是 y =f (x)的值域 .例 1 求 y =f (x) =2 x2 x + 1的值域 .解 :原函数的反函数为y =f -1 (x) =log2x1-x.其定义域由 x1-x>0来确定 ,所以 0 相似文献   

18.
求函数的值域涉及到的知识面很广,是教学中的难点之一,笔者在教学中教给学生用下列方法求函数的值域,取得了理想的效果。 一、运用方程的思想求函数值域 运用方程的思想求函数值域,就是将函数y=f(x)的解析式视为关于x的方程(y为参数),只需根据方程有实数解的条件,求出使该方程在函数定义域内有解的所有y值的集合,则此集合目即为函数y=f(x)的值域。 例1 求函数y=5x-1/2x-3(x∑R,且x≠3/2)的值域, 解:把函数式看成关于x的方程,变形得 (2y-5)x=3y 1, 由此可见,原方程在函数定义域内有解的充要条件是2y-5≠0,即y≠5/2,从而可确定所求函数的值域为(-∞,5/2)U(5/2, ∞)。  相似文献   

19.
我们都知道函数y=xk(k≠0)的值域为{y|y≠0},函数y=x+xk(k>0)的值域为y∈(-∞,-2k]∪[2k,+∞),借这两种函数原型,可用“分子常数化”来解决分式函数的值域问题.以下举例说明它的用法:例1已知f(x)=54xx+-31(x∈R,x≠35),求f(x)的值域.解因为f(x)=54xx-+31=45(5x-3)+1575x-3=45+5x157-3,又因为51×5x17-3≠0,所以f(x)≠54,所以f(x)∈(-∞,54)∪(54,+∞).点评这是直接应用反比例函数的值域求解.例2已知f(x)=(xx+-11)2(x≥1),求f(x)的值域.解因为xx-+11=(xx++1)1-2=1-2x+1,又因为x≥1,所以x+1≥2,则0<1x+1≤21,所以0-2x+1≥-1,…  相似文献   

20.
任何一个一元三次函数f(x)=a_3x~3 a_2x~2 a_1x a_0经过平移交换后一定可以转化为f(x)=ax~3 bx c的形式.本文先用初等数学的方法给出这种类型函数的单调区间,然后举竞赛题作为例子说明其应用. 定理函数 y=ax~3 bx c(a≠0)的单调性如下: 1.若a>0,b>0,则在(-∞, ∞)上单调递增. 2.若a<0,b<0,则在(-∞, ∞)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号