首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
正题目:求圆x2+y2=4上的点到直线l:x-3y+6=0距离的最小值和最大值.(苏教版数学必修(2)P103的例3)易求得最大值为5,最小值为1一、问题的提出师:谁能说说你是怎么求解的?理由是什么?生1:利用平面几何图形的特征,先求出圆心到直线的距离d=3,从而得到最小值为d-r=1,最大值为d+r=5师:很好!能否从代数方面严格证明这个结论呢?  相似文献   

2.
题目 :若 x>0 ,y>0且 x+ y≤ a( x+ y )成立 ,则 a的最小值是 (  ) .( A) 22    ( B) 2( C) 2  ( D) 2 2错解 原不等式可变形为 a≥x+ yx + y,a2≥ x+ yx+ y+ 2 xy ≥x+ yx+ y+ x+ y=12 成立 ,即 a≥ 22 ,选 A.质疑 当 x=1 ,y=3时 ,2≤ 22 ( 1 +3)不成立 ,与已知矛盾 ,因而 a的最小值不是 22 .错解看似很有道理 ,问题出在哪里 ?剖析 要使 a≥ x+ yx + y成立 ,a应不小于 x+ yx + y的最大值 ,而错解中求出x+ yx + y的最小值 ,把 x+ yx + y的最小值误认为 a的最小值 ,殊不知此最小值非彼最小值 ,因而解法是错误的 .正解 因为 ( x+ y …  相似文献   

3.
求形如“函数y=a-bsinxc-dcosx的最值”问题的解法较多,从这些解法中可体现出一些数学思想.一、数形结合思想例1.求函数y=1+sinx2+cosx的最小值和最大值.分析:因函数y=1+sinx2+cosx的定义域为R,所以把1+sinx2+cosx可以看为点(cosθ,sinθ)与点(-2,-1)所在直线的斜率.而点(cosθ,sinθ)的轨迹是圆x2+y2=1,因而问题就成为点(-2,-1)与圆x2+y2=1上的动点的连线的斜率最大值、最小值问题.易知,过点(-2,-1)向圆x2+y2=1所作的两条切线的斜率的最大值和最小值就是函数的最大值和最小值.如图,用平面几何的知识得出斜率kBD为所求的最小值,斜率kBC为…  相似文献   

4.
一般地说 ,一次函数y =kx +b不存在最大值或最小值 .但是 ,当给出了自变量x的取值范围这一特殊条件后 ,函数值y就可能有最值 .例如 ,一次函数y =kx+b ,x1≤x≤x2 .若k >0 ,如图 1 ,则y值随x的增大而增大 ,当x =x1时 ,y有最小值y1,当x =x2 时 ,y有最大值y2 ;若k <0 ,如图 2 ,则y值随x的增大而减小 ,当x =x1时 ,y有最大值y1,当x =x2 时 ,y有最小值y2 .图 1图 2例 1 已知关于x的方程x2 - 2x +k =0的实数根x1、x2 ,且y =x3 1+x3 2 .试问 :y是否有最大值或最小值 ?若有 ,试求出其值 ;若没有 ,请说明理由 .( 1 999,天津市中考题 )解 :由根与系数…  相似文献   

5.
巧算平均数     
【例1】 已知a>0,b>0且a+b=1,求证a+12+b+12≤2.证明:设x=a+12,y=b+12且x+y=k则射线x+y-k=0与圆弧x2+y2=2有交点,所以|-k|2≤2即|k|≤2.∴a+12+b+12≤2【例2】 已知实数x,y满足(x-3)2+(y-3)2=92,则yx的最大值是    .解:令yx=k,则直线kx-y=0与圆(x-3)2+(y-3)2=92有交点.所以|3k-3|k2+1≤32.整理,得k2-4k+1≤0.解之,得2-3≤k≤2+3.故yx的最大值是2+3.【例3】 求函数y=2-sinx2-cosx的值域.解:令u=cosx,v=sinx,则直线yu-v-2y+2=0与圆u2+v2=1有交点.∴|-2y+2|y2+1≤1整理,得3y2-8y+3≤0.解之,得4-73≤y≤4+73故所求函数的值域为[4-73,4+73…  相似文献   

6.
最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题.这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.一、配方法例1(2005年全国初中数学联赛武汉CASIO杯选拔赛)2x2+4xy+5y2-4x+2y-5可取得的最小值为.解:原式=(x+2y)2+(x-2)2+(y+1)2·27·-10.由此可知,当x=2,y=-1时,有最小值-10.二、设参数法例2(《中等数学》奥林匹克训练题)已知实数x、y满足x3+y3=2.则x+y的最大值为.解:设x+y=k,易知k>0.由x3+y3=2,得(x+y)(x2-xy+y2)=2.从而,xy=13(k2-k2).由…  相似文献   

7.
本文就函数f(x)=x+k/x(k>0)的图像,性质及其变形和应用进行归纳总结并展开讨论.结论1函数f(x)=x+k/x(k>0)的图象及性质:(1)图象如右图所示:(2)性质:①是奇函数;②在区间(k,+∞)和(?∞,?k)上单调递增,在区间(?k,0),和(0,k)上单调递减;③在x>0时,有最小值2k,在x<0时,有最大值?2k;④存在两条渐近线为直线y=x和x=0.应用1试讨论y=b/a+a/b(ab≠0)的取值情况.解当ab>0时,y≥2;当ab<0时,y≤?2,评述构造函数y=x+1/x,充分利用性质③进行解题.应用2求函数y=x+4/(x?3)(x>3)的最小值.解y=x?3+4/(x?3)+3≥7,当且仅当x=5时等号成立.所以y的最小值为7.评述令…  相似文献   

8.
研究数形结合的思想方法时 ,有这样一道求函数最值的例题 :求函数 y =x2 -6x+ 13 -x2 -2x+ 2 的最大值 .分析 若直接从数的角度考虑 ,较为困难 .注意到函数表达式可变形为 :y = (x-3 ) 2 + ( 0 -2 ) 2 -(x-1) 2 + ( 0 -1) 2 ,从形的角度看 ,函数值y可看作是平面直角坐标系中x轴上的动点M (x ,0 )到两定点A(3 ,2 )、B(1,1)距离之差 ,即 y =|MA|-|MB| (如图 1) .由平几知识 ,当M恰好是线段AB的延长线与x轴的定点 (-1,0 )时 ,y达到最大 ,最大值为|AB| =5 .因而题中所求的最大值为 5 .有同学提问 :这个函数是否存在最小值 ?如果存在…  相似文献   

9.
一、利用距离公式例1已知x+y+1=0,则u=(x-1)2+(y-12姨)的最小值为.解如图1所示,如果将u=(x-1)2+(y-1)2看姨成是P(x,y)与B(1,1)两点间的距离,由于点P(x,y)的坐标满足x+y+1=0,所以u的最小值也就是点B(1,1)到直线x+y+1=0的距离,所以um=1+1+13姨2in=.姨22二、利用直线斜率公式例2实数x,y满足(x-2)2+y2=3,求y的最大值.x解如图2所示,设点P(x,y)为圆(x-2)2+y2=3上任一点,则y为直线O P的x斜率k.易求得km=3,ax姨即y的最大值为姨3.x三、利用单位圆例3已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是A.tancosθθ2222C.…  相似文献   

10.
正一、展示不同解题方法,体现合作学习的魅力一次考试,同一道题目,可能出现多种不同解法,在试卷讲评中,让学生把各种不同解法充分展示出来,对开拓学生思维,有着很好的引导作用.考题:已知x2+y2=100,求x+y的最值.此题不难,但解决方法有多种,考试过后,同学们给出了多种不同解答.学生1:换元法,设x=10cosθ,y=10sinθ则x+y=10(cosθ+sinθ)=槡10 2 sin(θ+24),显然,最大值是槡10 2,最小值是-槡10 2.学生2:数形结合法,设t=x+y,则y=-x+t.转化为求直线y=-x+t截距的最大最小值,利用圆心到  相似文献   

11.
<正>2015年全国初中数学联赛中有如下三道求最值试题:1已知实数x,y满足关系式xy-x-y=1,则x2+y2的最小值为()(A)3-22(B)6-42(C)1(D)6+422已知实数x,y满足关系式x2+xy+y2=3,则(x-y)2的最大值为()(A)3(B)6(C)9(D)12  相似文献   

12.
我们知道,asinx+bcosx=a2+b2sin(x+φ),其中ab≠0,tanφ=ab,这个公式叫做辅助角公式.该公式可将异名三角函数化为同名三角函数,在解题中具有广泛的应用.现举例说明,以引起同学们的重视.一、求最值例1当-2π≤x≤2π时,函数f(x)=sinx+3cosx的()(A)最大值是1,最小值是-1(B)最大值是1,最小值是-21(C)最大值是2,最小值是-2(D)解最大值是2,最小值是-1f(x)=sinx+3cosx=2sinx+3π,因为-2π≤x≤2π,所以-6π≤x+π3≤65π,所以-21≤sinx+3π≤1,所以-1≤f(x)≤2·故选(D).例2求函数y=sin2+2sinx·cosx+3cos2x的最小值,并写出使函数y取最小值的解x…  相似文献   

13.
在学习了均值不等式(x+y/2)≥xy~(1/2),x>0,y>0之后,我们有下面的结论:(1)若x>0,y>0,xy=p(p为大于0的常数),则x+y有最小值2 p,当且仅当x=y=p时取得.(2)若x>0,y>0,x+y=s(s为大于0的常数),则xy有最大值14s2,当且仅当x=y=12s时取得.这两个结论依均值不等式,易于证明.下面我们进一步讨论如下两个问题:问题1若x>0,y>0,xy=p(p为大于0的常数)问xk+yl(k>0,l>0)有最小值吗?问题2若x>0,y>0,x+y=s(s为大于0的常数)问xkyl(k>0,l>0)有最大值吗?我们有如下结论:结论1若x>0,y>0,xy=p(p为大于0的常数),xk+yl(k>0,l>0)有最小值,即(xk+yl)min=(k+l)kpkklllk+11,当且仅当x=lkk1+lpkl+l取到最小值.结论2若x>0,y>0,x+y=s(s为大于0的常数),xkyl(k>0,l>0)有最大值,即(xkyl)max=sk+lkkll(k+l)k+l,当且仅当x=kk+sl取到最大值.下面我们以导数为工具证明这两个结论.引理[1](极值的第一充分条件)设f...  相似文献   

14.
问题若实数x,y,z满足x+y+z=12,x 2+y 2+z 2=54,试求xy的最大值和最小值.[JP3]解法1:由x 2+y 2=54-z 2,可设x=54-z 2 cosθ,y=54-z 2 sinθ.[JP]则x+y+z=12,即12-z=54-z 2(sinθ+cosθ)=108-2z 2 sin(θ+π4),从而|12-z|≤108-2z 2,解得z∈[2,6].所以xy=12[(x+y)2-(x 2+y 2)]=12[(12-z)2-(54-z 2)]=z 2-12z+45.由2≤z≤6,得9≤z 2-12z+45≤25,即xy的最大值为25,最小值为9.  相似文献   

15.
最值问题是初中数学的一个重要内容,也是各种考试命题的一个热点。笔者根据自己的教学体会,将初中阶段所涉及的求函数最值问题的题目类型归纳如下。 一、求y=ax~2+bx+c(a≠0)型的最大(小) 值 当a>0时,y最小值=(4ac-b~2)/4a;当a<0时,y最大值=(4ac-b~2)/4a。 例1.求y=-2x+7的最大值. 解 ∵a<0,∴y最大值=(81)/8. 例2.求y=2x~2-3x+4的最小值. 解 ∵a<0,∴y最小值=(23)/8. 二、求隐二次函数的最大(小)值 已知y与x不成二次函数关系,但z与x成二次函数关系,可以先求z的最大(小)值,而后再求y的最大(小)值. 例3.求函数y=1/(2+(x-1)~2)的最大值.  相似文献   

16.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

17.
题目:已知x2+y2=16,求x+y的最大值和最小值.(人民教育出版社高中数学第二册(上)复习参考题七B组第6 题) 求代数式的最大值和最小值,关键是构造出关于该代数式的不等式. 解:设x+t=t,则y=t-x,代人x2+y2=16并整理,得2x2-2tx+t2-16=0.因为x∈R,所以△=4t2-8  相似文献   

18.
一堂“基本不等式”的习题课上 ,老师提出这样一个问题 1:“若 x,y∈ R+,且 x + y =1,则 1x + 1y的最小值是 4,若 x,y∈ R+,且 1x + 1y =1,则 x+ y的最小值也是 4.那么若 x,y∈ R+,且 x +y = 1,则 1x + 4y 的最小值是不是与若 x,y∈R+,且 1x + 4y =1,则 x + y的最小值相同 ?为什么 ?”有的学生很快有了答案 ,有的学生怎么也做不出结果来 .老师问那些做出结果的同学 ,答案相同吗 ?学生 [1]说 :相同 .老师又问 :你是怎样求的 ?学生 [1]说 :因为 x,y∈ R+,且 x + y =1,所以 1x+ 4y=(1x+ 4y) (x + y) =5 + yx+4xy ≥ 5 + 2 yx .4xy =9(等号成…  相似文献   

19.
已知sin xcos y=1/2,求cos xsin y的最大值与最小值.错解1:令cos xsin y=t则cos xsin y+sin xcos y=t+1/2,即sin(x+y)=t+1/2.由|sin(x+y)|≤1,得|t+1/21|≤1,解得  相似文献   

20.
颜学华 《中学理科》2004,(10):41-41
现行高二 (上 )《数学》课本 (试验修订本必修 ) (人教版 ,2 0 0 0年第 2版 )第 1 0页例 1给出 :定理 1 已知x ,y都是正数 ,1 )如果积xy是定值P ,那么当且仅当x =y时 ,和x y有最小值 2p ;2 )如果和x y是定值S ,那么当且仅当x =y时 ,积xy有最大值 14 S2 .实际上 ,可把此最值定理推广为以下适用结论 .定理 2 设x ,y>01 )若xy =定值P ,则当且仅当 |x -y|取最小值时 ,x y取最小值 ;|x-y|取最大值时 ,x y最大值 ;2 )若x y=定值S ,则当且仅当 |x -y|取最小值时 ,xy取最大值 ;|x-y|取最大值时 ,xy取最小值 .证明 :1 )由x y =|x -y| 2 4…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号