首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes the development and testing of a magnetic microfluidic chip (MMC) for trapping and isolating cells tagged with superparamagnetic beads (SPBs) in a microfluidic environment for selective treatment and analysis. The trapping and isolation are done in two separate steps; first, the trapping of the tagged cells in a main channel is achieved by soft ferromagnetic disks and second, the transportation of the cells into side chambers for isolation is executed by tapered conductive paths made of Gold (Au). Numerical simulations were performed to analyze the magnetic flux and force distributions of the disks and conducting paths, for trapping and transporting SPBs. The MMC was fabricated using standard microfabrication processes. Experiments were performed with E. coli (K12 strand) tagged with 2.8 μm SPBs. The results showed that E. coli can be separated from a sample solution by trapping them at the disk sites, and then isolated into chambers by transporting them along the tapered conducting paths. Once the E. coli was trapped inside the side chambers, two selective treatments were performed. In one chamber, a solution with minimal nutrition content was added and, in another chamber, a solution with essential nutrition was added. The results showed that the growth of bacteria cultured in the second chamber containing nutrient was significantly higher, demonstrating that the E. coli was not affected by the magnetically driven transportation and the feasibility of performing different treatments on selectively isolated cells on a single microfluidic platform.  相似文献   

2.
Monocytes represent a class of immune cells that play a key role in the innate and adaptive immune response against infections. One mechanism employed by monocytes for sensing foreign antigens is via toll-like receptors (TLRs)—transmembrane proteins that distinguish classes of foreign pathogens, for example, bacteria (TLR4, 5, and 9) vs. fungi (TLR2) vs. viruses (TLR3, 7, and 8). Binding of antigens activates a signaling cascade through TLR receptors that culminate in secretion of inflammatory cytokines. Detection of these cytokines can provide valuable clinical data for drug developers and disease investigations, but this usually requires a large sample volume and can be technically inefficient with traditional techniques such as flow cytometry, enzyme-linked immunosorbent assay, or luminex. This paper describes an approach whereby antibody arrays for capturing cells and secreted cytokines are encapsulated within a microfluidic device that can be reconfigured to operate in serial or parallel mode. In serial mode, the device represents one long channel that may be perfused with a small volume of minimally processed blood. Once monocytes are captured onto antibody spots imprinted into the floor of the device, the straight channel is reconfigured to form nine individually perfusable chambers. To prove this concept, the microfluidic platform was used to capture monocytes from minimally processed human blood in serial mode and then to stimulate monocytes with different TLR agonists in parallel mode. Three cytokines, tumor necrosis factor-α, interleukin (IL)-6, and IL-10, were detected using anti-cytokine antibody arrays integrated into each of the six chambers. We foresee further use of this device in applications such as pediatric immunology or drug/vaccine testing where it is important to balance small sample volume with the need for high information content.  相似文献   

3.
Systematic screening of algal cells is getting huge interest due to their capability of producing lipid-based biodiesel. Here, we introduce a new microfluidic platform composed of an array of perfusion chambers designed for long-term cultivation and preliminary screening of motile microalgal cells through loading and releasing of cells to and from the chambers. The chemical environment in each perfusion chamber was independently controlled for 5 days. The effect of nitrogen-depletion on the lipid production, phototaxis behavior in the absence of Ca2+, and cytotoxic effect of herbicide on microalgal cells was successfully monitored and compared with simultaneous control experiments on the platform. The present methodology could be extended to effective screening of algal cells and various cell lines for the production of biodiesel and other useful chemicals.  相似文献   

4.
Hu N  Yang J  Qian S  Joo SW  Zheng X 《Biomicrofluidics》2011,5(3):34121-3412112
A microfluidic device integrated with 3D thin film microelectrode arrays wrapped around serpentine-shaped microchannel walls has been designed, fabricated and tested for cell electrofusion. Each microelectrode array has 1015 discrete microelectrodes patterned on each side wall, and the adjacent microelectrodes are separated by coplanar dielectric channel wall. The device was tested to electrofuse K562 cells under a relatively low voltage. Under an AC electric field applied between the pair of the microelectrode arrays, cells are paired at the edge of each discrete microelectrode due to the induced positive dielectrophoresis. Subsequently, electric pulse signals are sequentially applied between the microelectrode arrays to induce electroporation and electrofusion. Compared to the design with thin film microelectrode arrays deposited at the bottom of the side walls, the 3D thin film microelectrode array could induce electroporation and electrofusion under a lower voltage. The staggered electrode arrays on opposing side walls induce inhomogeneous electric field distribution, which could avoid multi-cell fusion. The alignment and pairing efficiencies of K562 cells in this device were 99% and 70.7%, respectively. The electric pulse of low voltage (~9 V) could induce electrofusion of these cells, and the fusion efficiency was about 43.1% of total cells loaded into the device, which is much higher than that of the convectional and most existing microfluidics-based electrofusion devices.  相似文献   

5.
We propose a blood separation microfluidic device suitable for point-of-care (POC) applications. By utilizing the high gas permeability of polydimethylsiloxane (PDMS) and phaseguide structures, a simple blood separation device is presented. The device consists of two main parts. A separation chamber with the phaseguide structures, where a sample inlet, a tape-sealed outlet, and a dead-end ring channel are connected, and pneumatic chambers, in which manually operating syringes are plugged. The separation chamber and pneumatic chambers are isolated by a thin PDMS wall. By manually pulling out the plunger of the syringe, a negative pressure is instantaneously generated inside the pneumatic chamber. Due to the gas diffusion from the separation chamber to the neighboring pneumatic chamber through the thin permeable PDMS wall, low pressure can be generated, and then the whole blood at the sample inlets starts to be drawn into the separation chamber and separated through the phaseguide structures. Reversely, after removing the tape at the outlet and manually pushing in the plunger of the syringe, a positive pressure will be created which will cause the air to diffuse back into the ring channel, and therefore allow the separated plasma to be recovered at the outlet on demand. In this paper, we focused on the study of the plasma separation and associated design parameters, such as the PDMS wall thickness, the air permeable overlap area between the separation and pneumatic chambers, and the geometry of the phaseguides. The device required only 2 μl of whole blood but yielding approximately 0.38 μl of separated plasma within 12 min. Without any of the requirements of sophisticated equipment or dilution techniques, we can not only separate the plasma from the whole blood for on-chip analysis but also can push out only the separated plasma to the outlet for off-chip analysis.  相似文献   

6.
There is great interest in highly sensitive separation methods capable of quickly isolating a particular cell type within a single manipulation step prior to their analysis. We present a cell sorting device based on the opposition of dielectrophoretic forces that discriminates between cell types according to their dielectric properties, such as the membrane permittivity and the cytoplasm conductivity. The forces are generated by an array of electrodes located in both sidewalls of a main flow channel. Cells with different dielectric responses perceive different force magnitudes and are, therefore, continuously focused to different equilibrium positions in the flow channel, thus avoiding the need of a specific cell labeling as discriminating factor. We relate the cells’ dielectric response to their output position in the downstream channel. Using this microfluidic platform that integrates a method of continuous-flow cell separation based on multiple frequency dielectrophoresis, we succeeded in sorting viable from nonviable yeast with nearly 100% purity. The method also allowed to increase the infection rate of a cell culture up to 50% of parasitemia percentage, which facilitates the study of the parasite cycle. Finally, we prove the versatility of our device by synchronizing a yeast cell culture at a particular phase of the cell cycle avoiding the use of metabolic agents interfering with the cells’ physiology.  相似文献   

7.
In this paper, a detailed numerical and experimental investigation into the optimisation of hydrodynamic micro-trapping arrays for high-throughput capture of single polystyrene (PS) microparticles and three different types of live cells at trapping times of 30 min or less is described. Four different trap geometries (triangular, square, conical, and elliptical) were investigated within three different device generations, in which device architecture, channel geometry, inter-trap spacing, trap size, and trap density were varied. Numerical simulation confirmed that (1) the calculated device dimensions permitted partitioned flow between the main channel and the trap channel, and further, preferential flow through the trap channel in the absence of any obstruction; (2) different trap shapes, all having the same dimensional parameters in terms of depth, trapping channel lengths and widths, main channel lengths and widths, produce contrasting streamline plots and that the interaction of the fluid with the different geometries can produce areas of stagnated flow or distorted field lines; and (3) that once trapped, any motion of the trapped particle or cell or a shift in its configuration within the trap can result in significant increases in pressures on the cell surface and variations in the shear stress distribution across the cell’s surface. Numerical outcomes were then validated experimentally in terms of the impact of these variations in device design elements on the percent occupancy of the trapping array (with one or more particles or cells) within these targeted short timeframes. Limitations on obtaining high trap occupancies in the devices were shown to be primarily a result of particle aggregation, channel clogging and the trap aperture size. These limitations could be overcome somewhat by optimisation of these device design elements and other operational variables, such as the average carrier fluid velocity. For example, for the 20 μm polystyrene microparticles, the number of filled traps increased from 32% to 42% during 5–10 min experiments in devices with smaller apertures. Similarly, a 40%–60% reduction in trapping channel size resulted in an increase in the amount of filled traps, from 0% to almost 90% in 10 min, for the human bone marrow derived mesenchymal stem cells, and 15%–85% in 15 min for the human embryonic stem cells. Last, a reduction of the average carrier fluid velocity by 50% resulted in an increase from 80% to 92% occupancy of single algae cells in traps. Interestingly, changes in the physical properties of the species being trapped also had a substantial impact, as regardless of the trap shape, higher percent occupancies were observed with cells compared to single PS microparticles in the same device, even though they are of approximately the same size. This investigation showed that in microfluidic single cell capture arrays, the trap shape that maximizes cell viability is not necessarily the most efficient for high-speed single cell capture. However, high-speed trapping configurations for delicate mammalian cells are possible but must be optimised for each cell type and designed principally in accordance with the trap size to cell size ratio.  相似文献   

8.
The instrument described here is an all-electronic dielectrophoresis (DEP) cytometer sensitive to changes in polarizability of single cells. The important novel feature of this work is the differential electrode array that allows independent detection and actuation of single cells within a short section ( ~ 300?μm) of the microfluidic channel. DEP actuation modifies the altitude of the cells flowing between two altitude detection sites in proportion to cell polarizability; changes in altitude smaller than 0.25 μm can be detected electronically. Analysis of individual experimental signatures allows us to make a simple connection between the Clausius-Mossotti factor (CMF) and the amount of vertical cell deflection during actuation. This results in an all-electronic, label-free differential detector that monitors changes in physiological properties of the living cells and can be fully automated and miniaturized in order to be used in various online and offline probes and point-of-care medical applications. High sensitivity of the DEP cytometer facilitates observations of delicate changes in cell polarization that occur at the onset of apoptosis. We illustrate the application of this concept on a population of Chinese hamster ovary (CHO) cells that were followed in their rapid transition from a healthy viable to an early apoptotic state. DEP cytometer viability estimates closely match an Annexin V assay (an early apoptosis marker) on the same population of cells.  相似文献   

9.
Polyelectrolyte multilayers (PEMs) based on the combinations poly(diallyldimethylammonium chloride)∕poly(acrylic acid) (PDADMAC∕PAA) and poly(allylamine hydrochloride)∕PAA (PAH∕PAA) were adsorbed on poly(dimethylsiloxane) (PDMS) and tested for nonspecific surface attachment of hydrophobic yeast cells using a parallel plate flow chamber. A custom-made graft copolymer containing poly(ethylene glycol) (PEG) side chains (PAA-g-PEG) was additionally adsorbed on the PEMs as a terminal layer. A suitable PEM modification effectively decreased the adhesion strength of Saccharomyces cerevisiae DSM 2155 to the channel walls. However, a further decrease in initial cell attachment and adhesion strength was observed after adsorption of PAA-g-PEG copolymer onto PEMs from aqueous solution. The results demonstrate that a facile layer-by-layer surface functionalization from aqueous solutions can be successfully applied to reduce cell adhesion strength of S. cerevisiae by at least two orders of magnitude compared to bare PDMS. Therefore, this method is potentially suitable to promote planktonic growth inside capped PDMS-based microfluidic devices if the PEM deposition is completed by a dynamic flow-through process.  相似文献   

10.
Fluid shear stress (FSS) plays a critical role in regulating endothelium function and maintaining vascular homeostasis. Current microfluidic devices for studying FSS effects on cells either separate high shear stress zone and low shear stress zone into different culturing chambers, or arranging the zones serially along the flow direction, which complicates subsequent data interpretation. In this paper, we report a diamond shaped microfluidic shear device where the high shear stress zone and the low shear stress zone are arranged in parallel within one culturing chamber. Since the zones with different shear stress magnitudes are aligned normal to the flow direction, the cells in one stress group are not substantially affected by the flow-induced cytokine/chemokine releases by cells in the other group. Cell loading experiments using human umbilical vein endothelial cells show that the device is able to reveal stress magnitude-dependent and loading duration-dependent cell responses. The co-existence of shear stress zones with varied magnitudes within the same culturing chamber not only ensures that all the cells are subject to the identical culturing conditions, but also allows the resemblance of the differential shear stress pattern in natural arterial conditions. The device is expected to provide a new solution for studying the effects of heterogeneous hemodynamic patterns in the onset and progression of various vascular diseases.  相似文献   

11.
The mechanical behavior of cells offers insight into many aspects of their properties. We propose an approach to the mechanical analysis of cells that uses a combination of electromanipulation for stimulus and capacitance for sensing. To demonstrate this approach, polystyrene spheres and yeast cells flowing in a 25 μm×100 μm microfluidic channel were detected by a perpendicular pair of gold thin film electrodes in the channel, spaced 25 μm apart. The presence of cells was detected by capacitance changes between the gold electrodes. The capacitance sensor was a resonant coaxial radio frequency cavity (2.3 GHz) coupled to the electrodes. The presence of yeast cells (Saccharomyces cerevisiae) and polystyrene spheres resulted in capacitance changes of approximately 10 and 100 attoFarad (aF), respectively, with an achieved capacitance resolution of less than 2 aF in a 30 Hz bandwidth. The resolution is better than previously reported in the literature, and the capacitance changes are in agreement with values estimated by finite element simulations. Yeast cells were trapped using dielectrophoretic forces by applying a 3 V signal at 1 MHz between the electrodes. After trapping, the cells were displaced using amplitude and frequency modulated voltages to produce modulated dielectrophoretic forces. Repetitive displacement and relaxation of these cells was observed using both capacitance and video microscopy.  相似文献   

12.
A size-selective cell sorting microfluidic device that utilizes optical force is developed. The device consists of a three-dimensional polydimethylsiloxane microstructure comprised of two crossed microchannels in a three-dimensional configuration. A line shaped focused laser beam is used for automatic size-selective cell sorting in a continuous flow environment. As yeast cells in an aqueous medium are fed continuously into a lower channel, the line shaped focused laser beam is applied (perpendicular to the direction of flow) at the junction of the two crossed channels. The scattering force of the laser beam was employed to push cells matching specific criteria upward from one channel to another. The force depends on the size of the cells, the laser power, and the fluid flow speed. The variation in size of yeast cells causes them to follow different routes at the intersection. For flow speeds below 30 μm∕s, all yeast cells larger than 3 μm were removed from the main stream. As a result, a high purity sample of small cells can be collected at the outlet of bottom channel.  相似文献   

13.
An analysis has been made of the dielectrophoretic (DEP) forces acting on a spheroidal particle in a traveling alternating electric field. The traveling field can be generated by application of alternating current signals to an octapair electrode array arranged in phase quadrature sequence. The frequency dependent force can be resolved into two orthogonal forces that are determined by the real and the imaginary parts of the Clausius–Mossotti factor. The former is determined by the gradient in the electric field and directs the particle either toward or away from the tip of the electrodes in the electrode array. The force determined by the imaginary component is in a direction along the track of the octapair interdigitated electrode array. The DEP forces are related to the dielectric properties of the particle. Experiments were conducted to determine the DEP forces in such an electrode arrangement using yeast cells (Saccharomyces cervisiate TISTR 5088) with media of various conductivities. Experimental data are presented for both viable and nonviable cells. The dielectric properties so obtained were similar to those previously reported in literature using other DEP techniques.  相似文献   

14.
We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device.  相似文献   

15.
Intrinsic graphene features semi-metallic characteristics that limit its applications in electronic devices, whereas graphene nanoribbons (GNRs) are promising semiconductors because of their bandgap-opening feature. However, the controllable mass-fabrication of high-quality GNR arrays remains a major challenge. In particular, the in situ growth of GNR arrays through template-free chemical vapor deposition (CVD) has not been realized. Herein, we report a template-free CVD strategy to grow large-area, high-quality and self-aligned GNR arrays on liquid copper surface. The width of as-grown GNR could be optimized to sub-10 nm with aspect ratio up to 387, which is higher than those of reported CVD-GNRs. The study of the growth mechanism indicates that a unique comb-like etching-regulated growth process caused by a trace hydrogen flow guides the formation of the mass-produced self-aligned GNR arrays. Our approach is operationally simple and efficient, offering an assurance for the use of GNR arrays in integrated circuits.  相似文献   

16.
Micro-orifice based cell fusion assures high-yield fusion without compromising the cell viability. This paper examines feasibility of a dielectrophoresis (DEP) assisted cell trapping method for parallel fusion with a micro-orifice array. The goal is to create viable fusants for studying postfusion cell behavior. We fabricated a microfluidic chip that contained a chamber and partition. The partition divided the chamber into two compartments and it had a number of embedded micro-orifices. The voltage applied to the electrodes located at each compartment generated an electric field distribution concentrating in micro-orifices. Cells introduced into each compartment moved toward the micro-orifice array by manipulation of hydrostatic pressure. DEP assisted trapping was used to keep the cells in micro-orifice and to establish cell to cell contact through orifice. By applying a pulse, cell fusion was initiated to form a neck between cells. The neck passing through the orifice resulted in immobilization of the fused cell pair at micro-orifice. After washing away the unfused cells, the chip was loaded to a microscope with stage top incubator for time lapse imaging of the selected fusants. The viable fusants were successfully generated by fusion of mouse fibroblast cells (L929). Time lapse observation of the fusants showed that fused cell pairs escaping from micro-orifice became one tetraploid cell. The generated tetraploid cells divided into three daughter cells. The fusants generated with a smaller micro-orifice (diameter∼2 μm) were kept immobilized at micro-orifice until cell division phase. After observation of two synchronized cell divisions, the fusant divided into four daughter cells. We conclude that the presented method of cell pairing and fusion is suitable for high-yield generation of viable fusants and furthermore, subsequent study of postfusion phenomena.  相似文献   

17.
Oxygen and glucose supply is one of the important factors for the growth and viability of the cells in cultivation of tissues, e.g., spheroid, multilayered cells, and three-dimensional tissue construct. In this study, we used finite element methods to simulate the flow profile as well as oxygen and glucose supply to the multilayered cells in a microwell array chip for static and perfusion cultures. The simulation results indicated that oxygen supply is more crucial than glucose supply in both static and perfusion cultures, and that the oxygen supply through the wall of the perfusion culture chip is important in perfusion cultures. Glucose concentrations decline with time in static cultures, whereas they can be maintained at a constant level over time in perfusion cultures. The simulation of perfusion cultures indicated that the important parameters for glucose supply are the flow rate of the perfusion medium and the length of the cell culture chamber. In a perfusion culture chip made of oxygen-permeable materials, e.g., polydimethylsiloxane, oxygen is hardly supplied via the perfusion medium, but mainly supplied through the walls of the perfusion culture chip. The simulation of perfusion cultures indicated that the important parameters for oxygen supply are the thickness of the flow channel and the oxygen permeability of the walls of the channel, i.e., the type of material and the thickness of the wall.  相似文献   

18.
Recent simulations by Chen and Dorfman [Electrophoresis 35, 405–411 (2014)] suggested that “tilting” the electric field with respect to the lattice vectors of a hexagonal post array would lead to a substantial improvement in electrophoretic DNA separations therein. We constructed such an array where the electric field is applied at an angle equidistant between the two lattice vectors. This tilted array leads to (i) baseline resolution of 20 kbp DNA and λ DNA (48.5 kbp) in a 4 mm channel and (ii) measurable separation resolutions for electric fields up to 50 V/cm, both of which are improvements over untilted post arrays of the same post density. The predicted time required to reach a resolution of unity is approximately 5 min, independent of electric field. The separations are more reproducible at higher fields.  相似文献   

19.
Circulating tumor cells (CTCs) are important biomarkers for monitoring tumor dynamics and efficacy of cancer therapy. Several technologies have been demonstrated to isolate CTCs with high efficiency but achieve a low purity from a large background of blood cells. We have previously shown the ability to enrich CTCs with high purity from large volumes of blood through selective capture in microvortices using the Vortex Chip. The device consists of a narrow channel followed by a series of expansion regions called reservoirs. Fast flow in the narrow entry channel gives rise to inertial forces, which direct larger cells into trapping vortices in the reservoirs where they remain circulating in orbits. By studying the entry and stability of particles following entry into reservoirs, we discover that channel cross sectional area plays an important role in controlling the size of trapped particles, not just the orbital trajectories. Using these design modifications, we demonstrate a new device that is able to capture a wider size range of CTCs from clinical samples, uncovering further heterogeneity. This simple biophysical method opens doors for a range of downstream interventions, including genetic analysis, cell culture, and ultimately personalized cancer therapy.  相似文献   

20.
主要对自组织型光纤激光器阵列技术进行了理论研究。重点利用耦合迭代法对自组织型相干光纤激光器阵列进行了分析,并给出了电场和增益系数的耦合迭代方程。对进一步对自组织型光纤激光器进行数学建模和理论分析提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号