首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In ac electrowetting, hydrodynamic flows occur within a droplet. Two distinct flow patterns were observed, depending on the frequency of the applied electrical signal. The flow at low-frequency range was explained in terms of shape oscillation and a steady streaming process in conjunction with contact line oscillation. The origin of the flow at high-frequency range has not yet been explained. We suggest that the high-frequency flow originated mainly from the electrothermal effect, in which electrical charge is generated due to the gradient of electrical conductivity and permittivity, which is induced by the Joule heating of fluid medium. To support our argument, we analyzed the flow field numerically while considering the electrical body force generated by the electrothermal effect. We visualized the flow pattern and measured the flow velocity inside the droplet. The numerical results show qualitative agreement with experimental results with respect to electric field and frequency dependence of flow velocity. The effects of induced-charge electro-osmosis, natural convection, and the Marangoni flow are discussed.  相似文献   

2.
We examined the performance of three microfluidic devices for stretching DNA. The first device is a microchannel with a contraction, and the remaining two are the modifications to the first. The modified designs were made with the help of computer simulations [C. C. Hsieh and T. H. Lin, Biomicrofluidics 5(4), 044106 (2011) and C. C. Hsieh, T. H. Lin, and C. D. Huang, Biomicrofluidics 6, 044105 (2012)] and they were optimized for operating with electric field. In our experiments, we first used DC electric field to stretch DNA. However, the experimental results were not even in qualitative agreement with our simulations. More detailed investigation revealed that DNA molecules adopt a globular conformation in high DC field and therefore become more difficult to stretch. Owing to the similarity between flow field and electric field, we turned to use flow field to stretch DNA with the same devices. The evolution patterns of DNA conformation in flow field were found qualitatively the same as our prediction based on electric field. We analyzed the maximum values, the evolution and the distributions of DNA extension at different Deborah number in each device. We found that the shear and the hydrodynamic interaction have significant influence on the performance of the devices.  相似文献   

3.
We develop an approximation for the probability of optically resolving two fluorescent labels on the backbone of a DNA molecule confined in a nanochannel in the Odijk regime as a function of the fluorescence wavelength, channel size, and the properties of the DNA (persistence length and effective width). The theoretical predictions agree well with equivalent data produced by Monte Carlo simulations of a touching wormlike bead model of DNA in a high ionic strength buffer. Although the theory is only strictly valid in the limit where the effective width of the nanochannel is small compared with the persistence length of the DNA, simulations indicate that the theoretical predictions are reasonably accurate for channel widths up to two-thirds of the persistence length. Our results quantify the conjecture that DNA barcoding has kilobase pair resolution-provided the nanochannel lies in the Odijk regime.  相似文献   

4.
本文分别取窗宽为1-5,应用视窗分析模型对我国各省市高校在2003-2007年的科研效率进行动态分析。通过比较不同窗宽的分析结果,发现随着窗宽的增加,我国各省市高校的TE和PE呈递减变化,SE呈无规律变化;科研效率在不同年份对窗宽的敏感程度不同;选择不同的窗宽会使得研究者对科研效率的长期变化趋势得出大相径庭的结论。对于"如何确定理想的窗宽",从理论上提出新的分析方法,研究确定理想的窗宽,建立适合于我国高校科研效率动态分析的更合理的视窗分析模型。与传统DEA模型的分析结果进行对比,发现两者之间存在很大的偏差。这进一步说明了建立理想窗宽的视窗分析模型,对我国高校科研效率进行动态分析是很有必要的,此视窗模型的分析结果更符合科研工作的实际情况。  相似文献   

5.
We have studied the contraction and extension of Vorticella convallaria and its mechanical properties with a microfluidic loading system. Cells of V. convallaria were injected to a microfluidic channel (500 μm in width and 100 μm in height) and loaded by flow up to ∼350 mm s−1. The flow produced a drag force on the order of nanonewton on a typical vorticellid cell body. We gradually increased the loading force on the same V. convallaria specimen and examined its mechanical property and stalk motion of V. convallaria. With greater drag forces, the contraction distance linearly decreased; the contracted length was close to around 90% of the stretched length. We estimated the drag force on Vorticella in the channel by calculating the force on a sphere in a linear shear flow.  相似文献   

6.
The effect of an electrical double layer (EDL) on microchannel flow has been studied widely, and a constant bulk electric conductivity is often used in calculations of flow rate or pressure drop. In our experimental study of pressure-driven micropipette flows, the pipette diameter is on the same order of magnitude as the Debye length. The overlapping EDL resulted in a much higher electric conductivity, lower streaming potential, and lower electroviscous effect. To elucidate the effect of overlapping EDL, this paper developed a simple model for water flow without salts or dissolved gases (such as CO2) inside a two-dimensional microchannel. The governing equations for the flow, the Poisson, and Nernst equations for the electric potential and ion concentrations and the charge continuity equation were solved. The effects of overlapping EDL on the electric conductivity, velocity distribution, and overall pressure drop in the microchannel were quantified. The results showed that the average electric conductivity of electrolyte inside the channel increased significantly as the EDL overlaps. With the modified mean electric conductivity, the pressure drop for the pressure-driven flow was smaller than that without the influence of the EDL on conductivity. The results of this study provide a physical explanation for the observed decrease in electroviscous effect for microchannels when the EDL layers from opposing walls overlap.  相似文献   

7.
We investigate the fluctuation-relaxation dynamics of entropically restricted DNA molecules in square nanochannels ranging from 0.09 to 19.9 times the persistence length. In nanochannels smaller than the persistence length, the chain relaxation time is found to have cubic dependence on the channel size. It is found that the effective polymer width significantly alter the chain conformation and relaxation time in strong confinement. For thinner chains, looped chain configurations are found in channels with height comparable to the persistence length, with very slow relaxation compared to un-looped chains. Larger effective chain widths inhibit the formation of hairpin loops.  相似文献   

8.
Huang CT  Weng CH  Jen CP 《Biomicrofluidics》2011,5(4):44101-4410111
Particle focusing in microfluidic devices is a necessary step in medical applications, such as detection, sorting, counting, and flow cytometry. This study proposes a microdevice that combines insulator-based and metal-electrode dielectrophoresis for the three-dimensional focusing of biological cells. Four insulating structures, which form an X pattern, are employed to confine the electric field in a conducting solution, thereby creating localized field minima in the microchannel. These electrodes, 56-μm-wide at the top and bottom surfaces, are connected to one electric pole of the power source. The electrodes connected to the opposite pole, which are at the sides of the microchannel, have one of three patterns: planar, dual-planar, or three-dimensional. Therefore, low-electric-field regions at the center of the microchannel are generated to restrain the viable HeLa cells with negative dielectrophoretic response. The array of insulating structures aforementioned is used to enhance the performance of confinement. According to numerical simulations, three-dimensional electrodes exhibit the best focusing performance, followed by dual-planar and planar electrodes. Experimental results reveal that increasing the strength of the applied electric field or decreasing the inlet flow rate significantly enhances focusing performance. The smallest width of focusing is 17 μm for an applied voltage and an inlet flow rate of 35 V and 0.5 μl/min, respectively. The effect of the inlet flow rate on focusing is insignificant for an applied voltage of 35 V. The proposed design retains the advantages of insulator-based dielectrophoresis with a relatively low required voltage. Additionally, complicated flow controls are unnecessary for the three-dimensional focusing of cells.  相似文献   

9.
This paper applies the lattice Boltzmann method (LBM) to a 3D simulation of micro flows in an expansion-contraction microchannel. We investigate the flow field under various inlet flow rates and cavity structures, and then systematically study the flow features of the vortex and Dean flow in this channel. Vortex formation analysis demonstrates that there is no observable vortex generated when the inlet flow rate is low enough. As the inlet flow rate increases, a small vortex first appears near the inlet, and then this vortex region will keep expanding until it fully occupies the cavity. A smaller cavity width may result in a larger vortex but the vortex is less influenced by cavity length. The Dean flow features at the outlet become more apparent with increasing inlet flow rate and more recirculation regions can be observed in the cross-section under over high inlet flow rate. In order to support the simulation results, some experimental processes are conducted successfully. It validates that the applied model can accurately characterize the flow in the microchannel. Results of simulations and experiments in this paper provide insights into the design and operation of microfluidic systems for particle/cell manipulation.  相似文献   

10.
Micromixer based on viscoelastic flow instability at low Reynolds number   总被引:1,自引:0,他引:1  
We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., Re≈0.023, but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of <10 μs. Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability. Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing.  相似文献   

11.
This paper presents a numerical study of DC-biased AC-electrokinetic (DC-biased ACEK) flow over a pair of symmetrical electrodes. The flow mechanism is based on a transverse conductivity gradient created through incipient Faradaic reactions occurring at the electrodes when a DC-bias is applied. The DC biased AC electric field acting on this gradient generates a fluid flow in the form of vortexes. To understand more in depth the DC-biased ACEK flow mechanism, a phenomenological model is developed to study the effects of voltage, conductivity ratio, channel width, depth, and aspect ratio on the induced flow characteristics. It was found that flow velocity on the order of mm/s can be produced at higher voltage and conductivity ratio. Such rapid flow velocity is one of the highest reported in microsystems technology using electrokinetics.  相似文献   

12.
Wu L  Lanry Yung LY  Lim KM 《Biomicrofluidics》2012,6(1):14113-1411310
In this paper, a new dielectrophoresis (DEP) method based on capture voltage spectrum is proposed for measuring dielectric properties of biological cells. The capture voltage spectrum can be obtained from the balance of dielectrophoretic force and Stokes drag force acting on the cell in a microfluidic device with fluid flow and strip electrodes. The method was demonstrated with the measurement of dielectric properties of human colon cancer cells (HT-29 cells). From the capture voltage spectrum, the real part of Clausius-Mossotti factor of HT-29 cells for different frequencies of applied electric field was obtained. The dielectric properties of cell interior and plasma membrane were then estimated by using single-shell dielectric model. The cell interior permittivity and conductivity were found to be insensitive to changes in the conductivity of the medium in which the cells are suspended, but the measured permittivity and conductivity of cell membrane were found to increase with the increase of medium conductivity. In addition, the measurement of capture voltage spectrum was found to be useful in providing the optimum operating conditions for separating HT-29 cells from other cells (such as red blood cells) using dielectrophoresis.  相似文献   

13.
基于中国2013-2018年271个地级及以上城市数据,构造了中国城市层面的数字经济发展指数,实证检验了数字经济驱动创新发展的事实与作用机理。研究发现:数字经济能显著促进地区创新发展,这一结论在进行一系列稳健性检验后仍然成立;数字经济对实用型和外观型创新的驱动作用显著强于对发明型的驱动作用,数字经济创新效应具有显著结构性特征;知识流动在数字经济驱动地区创新发展中具有显著中介作用,且对不同创新类型的中介效果具有一定的差异;数字经济创新效应具有显著地区差异,发达城市的数字经济创新效应显著高于经济水平落后城市;知识流动在同级别城市中的中介作用显著高于跨级城市,知识流动在经济落后城市中的中介作用显著高于经济发达城市。数字经济能通过知识流动的中介作用助力城市创新发展的“强强合作”与均衡发展,为中国有效实施创新驱动发展战略和数字化建设提供重要政策依据。  相似文献   

14.
The effects of rheological behavior of blood and pulsatility on flow through an artery with stenosis have been investigated. Blood has been represented by a non-Newtonian fluid obeying Herschel–Bulkley equation. Using the Reynolds number as the perturbation parameter, a perturbation technique is adopted to solve the resulting quasi-steady non-linear coupled implicit system of differential equations. Analytical expressions for velocity distribution, wall shear stress, volumetric flow rate and the mean flow resistance have been obtained. It is observed that the wall shear stress and flow resistance increase for increasing value of yield stress with other parameters held fixed. One of the remarkable results of the present analysis is not only to bring out the effect of the size of the stenosis but also to study the influence of the shape of the stenosis. The change in the shape of the stenosis brings out a significant change in the value of flow resistance but it has no effect on the variation of wall shear stress except shifting the point (where it attains its maximum value) towards downstream. It is pertinent to point out that pulsatile flow of Newtonian fluid, Bingham plastic fluid and Power-law fluid become particular cases of the present model. The present approach has general validity in comparison with many mathematical models developed by others and may be applied to any mathematical model by taking into account of any type of rheological property of blood. The obtained velocity profiles have been compared with the experimental data and it is observed that blood behaves like a Herschel–Bulkley fluid rather than Power-law and Bingham fluids. Finally, some biorheological applications of the present model have briefly been discussed.  相似文献   

15.
核心产品是企业生存发展的生命线,基于核心产品的企业收缩是以构建企业竞争优势和核心竞争力为目标的企业战略形式.在回顾企业收缩动因背景的基础上,提出了基于核心产品的企业收缩模式,认为培育企业核心产品是增强企业市场竞争力的根基,而增强企业竞争力则是企业收缩的直接动机.并以交易成本论、代理理论、规模不经济和负协同效应等理论为基础,分析了企业收缩的内在动因在于其价值增加,最后指出分析企业收缩动因的意义所在.  相似文献   

16.
Intracellular drug delivery by rapid squeezing is one of the most recent and simple cell membrane disruption-mediated drug encapsulation approaches. In this method, cell membranes are perforated in a microfluidic setup due to rapid cell deformation during squeezing through constricted channels. While squeezing-based drug loading has been successful in loading drug molecules into various cell types, such as immune cells, cancer cells, and other primary cells, there is so far no comprehensive understanding of the pore opening mechanism on the cell membrane and the systematic analysis on how different channel geometries and squeezing speed influence drug loading. This article aims to develop a three-dimensional computational model to study the intracellular delivery for compound cells squeezing through microfluidic channels. The Lattice Boltzmann method, as the flow solver, integrated with a spring-connected network via frictional coupling, is employed to capture compound capsule dynamics over fast squeezing. The pore size is proportional to the local areal strain of triangular patches on the compound cell through mathematical correlations derived from molecular dynamics and coarse-grained molecular dynamics simulations. We quantify the drug concentration inside the cell cytoplasm by introducing a new mathematical model for passive diffusion after squeezing. Compared to the existing models, the proposed model does not have any empirical parameters that depend on operating conditions and device geometry. Since the compound cell model is new, it is validated by simulating a nucleated cell under a simple shear flow at different capillary numbers and comparing the results with other numerical models reported in literature. The cell deformation during squeezing is also compared with the pattern found from our compound cell squeezing experiment. Afterward, compound cell squeezing is modeled for different cell squeezing velocities, constriction lengths, and constriction widths. We reported the instantaneous cell center velocity, variations of axial and vertical cell dimensions, cell porosity, and normalized drug concentration to shed light on the underlying physics in fast squeezing-based drug delivery. Consistent with experimental findings in the literature, the numerical results confirm that constriction width reduction, constriction length enlargement, and average cell velocity promote intracellular drug delivery. The results show that the existence of the nucleus increases cell porosity and loaded drug concentration after squeezing. Given geometrical parameters and cell average velocity, the maximum porosity is achieved at three different locations: constriction entrance, constriction middle part, and outside the constriction. Our numerical results provide reasonable justifications for experimental findings on the influences of constriction geometry and cell velocity on the performance of cell-squeezing delivery. We expect this model can help design and optimize squeezing-based cargo delivery.  相似文献   

17.
Lim CY  Lam YC 《Biomicrofluidics》2012,6(1):12816-1281617
Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings.  相似文献   

18.
Li H  Ye T  Lam KY 《Biomicrofluidics》2011,5(2):21101
The motion trajectory and deformation behavior of a neutral red blood cell (RBC) in a microchannel subjected to an externally applied nonuniform electric field are numerically investigated, where both the membrane mechanical force and the dielectrophoresis (DEP) force are considered. The simulation results demonstrate that the DEP force is significantly influenced by several factors, namely, the RBC size, electrode potential, electric frequency, RBC permittivity, and conductivity, which finally results in the different behaviors of the cell motion and deformation in the nonuniform electric field.  相似文献   

19.
李荣杰  李娜  阎晓 《资源科学》2022,44(3):523-535
在碳达峰碳中和目标约束下,推进经济社会发展全面绿色转型势在必行。受限于电力资源供需的逆向分布特征,中国尚未有效建立统一电力市场,清洁电力消纳能力不足,严重制约地区绿色经济效率的提升。本文借助2013—2018年中国30个省(市、区)的面板数据,利用空间面板模型和中介模型分析了电力市场一体化对地区绿色经济效率的影响效应及影响机制。结果表明:①电力市场一体化不仅能够有效促进各省(市、区)自身绿色经济效率的提升,也能够对空间关联地区的绿色经济效率产生显著的溢出影响;②电力市场一体化对各省(市、区)绿色经济效率提升的促进作用既能够直接产生,也能通过实现规模效应、优化产业结构和提高企业技术创新能力3种途径的传导而间接产生。研究结果的政策启示包括:完善统一电力市场总体设计和治理体系,推进区域电力市场协同运行与融合发展,加强电力市场对地区绿色发展的支撑作用。  相似文献   

20.
The spatial concentration distribution of cells in a microchannel is measured by combining the dielectric properties of cells with the specific structure of the electrode-multilayered microchannel. The dielectric properties of cells obtained with the impedance spectroscopy method includes the cell permittivity and dielectric relaxation, which corresponds to the cell concentration and structure. The electrode-multilayered microchannel is constructed by 5 cross-sections, and each cross-section contains 5 electrode-layers embedded with 16 micro electrodes. In the experiment, the dielectric properties of cell suspensions with different volume concentrations are measured with different electrode-combinations corresponding to different electric field distributions. The dielectric relaxations of different cell concentrations are compared and discussed with the Maxwell-Wagner dispersion theory, and the relaxation frequencies are analysed by a cell polarization model established based on the Hanai cell model. Moreover, a significant linear relationship with AC frequency dependency between relative permittivity and cell concentration was found, which provides a promising way to on-line estimate cell concentration in microchannel. Finally, cell distribution in 1 cross-section of the microchannel (X and Y directions) was measured with different electrode-combinations using the dielectric properties of cell suspensions, and cell concentration distribution along the microchannel (Z direction) was visualized at flowing state. The present cell spatial sensing study provides a new approach for 3 dimensional non-invasive online cell sensing for biological industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号