首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
二次函数y=ax~2 bx c(a≠0)的图象是一条抛物线,将其沿坐标轴平移或以顶点为中心旋转180°后,求其解析式,同学们感到很棘手,原因是不得要领。笔者在实践中摸索出了两种常用技巧。 1.求把抛物线y=ax~2 bx c(a≠0)沿坐标轴平移后的解析式。首先把抛物线的解析式y=ax~2 bx c化成顶点式y=a(x h)~2 k。如果抛物线向左(或向右)平移|m|个单位,则要将h加上(或减去)|m|个单位。可简记为“左加右减”。如果是把抛物线向上(或向下)平移|n|个单位,则是将k加上(或减去)|n|个单位,可简记为“上加下减”。a的值不变。  相似文献   

2.
求直线y=kx h与抛物线y=ax~2 bx c的切点坐标,需要解方程组 y=ax~2 bx c, y=kx h. 此方程组有没有解?如果有解,又有几解?这是直线与抛物线的位置关系问题.这个问题可通过以下方法解决: y=ax~2 bx c, y=kx h ax~2 bx c=kx h ax~2 (b-k)x (c-h)=0. 其判别式为△′0=(b-k)~2-4a(c-h). ①△′>0 直线与抛物线相交,设交点为 A(x_1,y_1),B(x_2,y_2);  相似文献   

3.
如果抛物线y=ax~2 bx c与x轴有两个交点,那么方程ax~2 bx c=0有不相等的两实根,反之亦然,此时 ∵方程的两根为: ∴抛物线y=ax~2 bx c与x轴的两个交点A、B之间的距离为: 如果把作为一个公式来应用,那么对解决某些有关二次函数的问题就显得简便多了。 一、求二次函数的解析式 例1,已知对称轴与y轴平行的抛物线和y轴交点到原点的距离等于6,与x轴两交点的距离等于2,并且顶点在直线x y=0上,求二次函数的解析式。 解:设y=ax~2 bx c, 则顶点为 根据题意得: 解得: ∴所求解析式为: y=2x~2-8x 6或y=-2x~2-8x-6。 例2,二次函数y=ax~2 bx c在x=2时,它的最大值是16,且图象与x轴的两个交点间的距离是8,术该二  相似文献   

4.
这个公式除了表示一元一次方程ax~2 bx c=0的两根之差的绝对值外,还表示抛物线y=ax~2 bx c与x轴的两个交点的距离。利用这个公式解题,可使某些复杂问题得到简单解决。本文介绍几类实例,供大家参考。  相似文献   

5.
一元二次方程ax~2+bx+c=0和二次函数y=ax~2+bx+c的关系密不可分。在y=ax~2+bx+c中,当y=0时,就变成了ax~2+bx+c=0。而一元二次方程ax~2+bx+c=0的两根x_1,x_2,就是二次函数y=ax~2+bx+c的图象与x轴交点的横坐标。因此,根与系数的关系不但可以用于方程这中,也常用于二次函数之中。 一 求待定系数的值 例1 抛物线y=x~2-(2m-1)x-2m与x轴的  相似文献   

6.
二次函数y=ax~2+bx+c(a≠0),当函数值y=0时,ax~2+bx+c=0就是一个一元二次方程.换句话说,一元二次方程的根即是二次函数.y=ax~2十bx+c的函数值为零时相应的自变量的值.因此,我们可以这样求解一元二次方程ax~2+bx+c=0(a≠0):  相似文献   

7.
一、要点解读对于二次函数的解析式:y=ax~2 bx c(a≠0)。其图象与其系数的关系如下:1.a的符号:a的符号由抛物线的开口方向决定.抛物线开口向上,则a>0;抛物线开口向下,则a<0.2.b的符号:b的符号由对称轴决定,若对称轴是y轴,则b=0;若抛物线的顶点在y轴左侧。顶点的横坐  相似文献   

8.
本期问题 初65.已知实系数多项式函数y=ax~2 bx c,对任何|x|≤1,均有|y|≤1.试求|a| |b| |c|的最大值.(陈宽宏 湖南省岳阳县熊市中学,414113)  相似文献   

9.
命题.平行于抛物线y=ax~2(a(?)0)的弦的切线上切点的横坐标,等于弦中点的横坐标. 因此,抛物线y=a(?)平行弦中点的横坐标都相同,对抛物线y=ax~2+bx+c及ay~2+by+c=x有类似结论.  相似文献   

10.
函数y=|ax2 bx c|(a≠0)在区间[p,q]上的最大值,由其图象易知只能在x=p或x=q或x=-b/2a处取得,利用这一性质可以直观明晰地解决有关问题. 例1 已知二次函数f(x)=ax2 bx c,当|x|≤1时,有f(x)≤1.求证:当|x|≤2时,|f(x)|≤7. 分析:只需证|f(-2)|、|f(2)|均不大于7,且当|-b/2a|≤2时,|f(-b/2a)|也不大于7  相似文献   

11.
一元二次方程ax~2 bx c=0(a≠0)是初中代数的重点内容,除了求根公式和韦达定理(根与系数关系)外,我们可进一步推得如下有用定理设x_1、x_1是方程ax~2 bx C=0(C≠0)的两根,则有|x_1-x_2|=△~(1/△)|a|(△=b~2-4ac)(*) (*)式的证明很简单,利用求根公式即可.但它的作用却不可小看,特别是用它求二次函数y=ax~2 bx C与x轴两个交点之间的距离较为简捷.  相似文献   

12.
一、y=ax~2+bx+c中a、b、c的几何意义 1.抛物线开口向上,则(a>0,抛物线开口向下,则a<0;2.抛物线与y轴交于x轴上方,则c>O,与y轴交于x轴下方,则c<0.3。抛物线的对称轴位于y轴左侧,则a、b同号,对称轴位于y轴右侧,则a、b异号。例1 二次函数y=ax~2+bx+c图象如图所示,试决定a、b、c符号。解∵抛物线开口向上,∴a>0,抛物线与y轴交于x轴上方,∴c>0,又对称轴位于y轴左侧,故a、b同号,由于a>0,∴b>0,∴a>0,b>0,c>0。  相似文献   

13.
中学代数中的二次三项式 ax~2 bx c,一元二次方程 ax~2 bx c=0,二次函数y= ax~2 bx c,一元二次不等式 ax~2 bx c>0(或<0),这“四个二次式”中的 a 均不为零.串起来形成“四个二次式”的知识结构.其中二次三项式是以因式分解为主,分解的方法有公式法、十字相乘法、配方法等,它是研究一元二次方程和二次函数的基础;一元二次方程又包括了一元二次方  相似文献   

14.
我们知道,如果抛物线y=ax~2+bx+c与x轴有两个交点,横坐标分别是x_1和x_2,则这个抛物线可写成交点式y=a(x…x_1)(x-x_2)。本文提供几个利用交点式求二次函数的解析式的例题,供同学们学习时参考。  相似文献   

15.
作二次函数y=ax~2 bx c(a≠0)的略图是初中学生应掌握的基本技能。怎样才能比较正确,迅速地作出二次函数的略图呢?我是这样教学生的。 因为二次函数y=ax~2 bx c(a≠0)的图象是以直线x=b/(2a)为对称轴的抛物线。  相似文献   

16.
利用平面直角坐标系可能直观看出二次函数与一元二次方程的紧密联系,一元二次方程ax~2 bx c=0(a≠0)的根就是二次函数y=ax~2 bx c(a≠0)的图象与x轴交点的横坐标,而二次函数的图象与x轴有无公共点又由判别式b~2-4ac来决定。因此,在解决有关函数的问题时,常常要用到一元二次方程的有关知识。下面例举方程知识在二次函数中的应用。 例1 二次函数y=ax~2 bx c(a≠0)在x=-1时有最小值-4,它的图象与x轴交点的横坐标分别为x_1、x_2,且x_1~2 x_2~2=10。求此二次函数的解析式。 解:由题意可知,抛物线的顶点坐标为(-1,-4),故设其解析式为y=a(x十1)~2-4(a≠0)。  相似文献   

17.
函数解析式是研究函数性质的基础,其解析式的求法也综合了代数、几何的相关知识及相应的数学思想方法,而待定系数法是求函数解析式的基本方法。 1.一般式法 若已知抛物线经过的三个点的坐标,则可用一般式y=ax~2+bx+c来求解。  相似文献   

18.
我们知道,二项展开式(x y)~n=sum from i=0 to n(C_n~ix~(n-i)y~i)的各项系数C_n~0,C_n~1,…,C_n~n的大小规律具有单峰性,即 当n为偶数时,C_n~0C_n~(n/2 1>)…>C_n~n; 当n为奇数时,C_n~0C_n~((n 1)/2) 1>…>C_n~n。 实际上,(ax by)~n=(sum from i=0 to n(C_n~ia~(n-i)b~ix~(n-i)y~i)(a,b∈R,ab≠0,n∈N_ ) ①的各项系数的绝对值 g_(i 1)=C_n~i|a|~(n-i)|b|~i(i=0,1,…,n) ②的大小规律也具有单峰性,本文给出这方面的结论。  相似文献   

19.
近年来各地的中考题巾频频出现有关二次函数的图象信息题,求解此类问题的关键是要能够准确地分析函数解析式中的有关量与图象位置形状关系,正确地进行数与形的转换.下面举例分析,希望对同学们学好这部分知识能够有所帮助.一、由系数的符号确定抛物线的位置例1一次函数y=kx+b与二次函数y=ax~2+bx  相似文献   

20.
二次函数 y=ax~2+bx+c(a≠0)是初中代数教材中最重要、最丰富的内容之一。求它的解析式又是学好二次函数这一章的关键。所谓求二次函数解析式,实质上就是确定函数式中三个常数系数 a、b、c 的值。一般来说,这需要具备三个相互独立的条件。而根据题设不同的条件,只要能选择恰当的、合理的方法,就可以灵活有效地求得解析式。本文介绍初中阶段求二次函数解析式的六种方法,其中重点介绍课本上没有的几种。一、三点法已知二次函数 y=ax~2+bx+c 图象经过已知的三点,求二次函数解析式。这是课本上出现的基本类型,这里就不说了。二、平移法例1.已知二次函数的图象是由抛物线 y=ax~2向  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号