首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>求数列通项在高考中属于常考内容,本文归纳整理了几种方法,供参考.一、已知a_1和a_n=a_(n-1)+f(n)型,其中f(n)可求和例1已知数列{a_n}满足a_(n+1)=a_n+3n+2,且a_1=2,求a_n.解由a_(n+1)=a_n+3n+2知a_(n+1)-a_n=3n+2,a_n-a_(n-1)=3n-1.a_n=(a_n-a_(n-1))+(a_(n-1)-a_(n-2))+…+(a_2-a_1)+a_1=(3n-1)+(3n-4)+……+5+2  相似文献   

2.
两恒等式a_n=a_1·(a_2/a_1)……(a_n/a_(n-1))及a_n=a_1+(a_2-a_1)+…+(a_n-a_(n-1))分别被称之为等比恒等式与等差恒等式。在处理很多数列问题时,若能恰到好处地利用这两个恒等式,则会给求解带来很多方便,下面略举几例。 例1 (2002年浙江等21省市高考题)设数列{a_n}满足a_(n+1)=a_n~2-na_n+1,n∈N~+。 (1)当a_1=2时,求a_2、a_3、a_4,并由此猜想出a_n的一个通项公式。 (2)当a_1≥3时,证明对所有的n≥1有: (i)a_n≥n+2; (ii)1/(1+a_1)+1/(1+a_2)+…+1/(1+a_n)≥1/2。 简解:(1)略。 (2)(i)用数学归纳法:①当n=1,a_1≥3=1+2结论成立。  相似文献   

3.
<正>求递推数列的通项公式的方法较多,技巧性很强.本文主要探究形如a_(n+1)=pa_n+f(n)(p为常数,n∈N*)的递推数列通项公式的求法.一、引例例1已知数列{a_n}满足a_1=3,a_(n+1)=2a_n+5n+1(n∈N*),求该数列的通项公式.解(辅助数列法)由a_(n+1)=2a_n+5n+1,得a_(n+1)+5(n+1)+6=2(a_n+5n+6).(1)  相似文献   

4.
<正>类型一:累加法形如:a_n=a_(n-1)+f(n)(其中f(n)不是常值函数)例1已知数列{a_n}满足a_1=3,2/a_n-a_(n+1)=n(n+1),则a_n=____。方法指导:先将递推公式变形为a_n-a_(n-1)=f(n),令n=2,3,4,…,n,再将这n-1个式子相加,得a_n-a_1=f(2)+f(3)+…+f(n)。所以,a_n=a_1+f(2)+f(3)+…+f(n)=a_1+  相似文献   

5.
根据给出的数列的递推关系,求它的通项公式中,用特征方程求数列的通项公式,是非常有效的方法。例如,已知数列{a_n}具有关系a_1=3~(1/2),且a_(n+1)=1/2 a_n-3,求a_n的表达式,可用下面方法来解。∵a_(n+1)=1/2 a_n-3,把它两边同加上6,得a_(n+1)+6=1/2 a_n+3=1/2(a_n+6)。  相似文献   

6.
例1已知数列{a_n}中,a_1=1,对任意自然数n都有a_n=a_(n-1)+1/(n(n+1)),求a_n.解:由已知得a_n-a_(n-1)=1/(n(n+1)),a_(n-1)-a_(n-2)=1/((n-1)n),…,a_3-a_2=1/(3×4),a_2-a_1=1/(2×3).以上n-1个式子累加,并利用1/(n(n+1))=1/n-1/(n+1),得a_n-a_1=1/(2×3)+…+1/((n-2)(n-1))+1/((n+1)n)+1/(n(n+1))=1/2-1/(n+1),∴a_n=3/2-1/(n+1).点评:求形如a_n-a_(n-1)=f(n)的数列通项,可用累加法.  相似文献   

7.
<正>要判断一个数列是否具有周期性或求一个数列的周期,主要方法是通过递推公式求出数列的前几项,观察得到规律或由递推公式发现规律。1.根据数列的周期性求某项的值例1已知数列{a_n}满足a_1=3,a_2=6,a_(n+2)=a_(n+1)-a_n,求a_(2017)。解析:由a_1=3,a_2=6,a_(n+2)=a_(n+1)-a_n,得  相似文献   

8.
数列{a_n}中,a_1=1,a_(n+1)=1/(16)(1+4a_n+(1+24a_n)~(1/2)),求a_n.解:构建新数列{b_n},使b_n=(1+24a_n)~(1/2)>0,则b_1=5,b_n~2=1+24a_n(?)a_n=(b_n~2-1)/(24).由a_(n+1=1/16(1+4a_n+(1+24a_n)~(1/2)),得(b_(n+1)~2-1)/(24)=  相似文献   

9.
一本杂志上刊登过如下一道题目: 题一:设,f(x)=(x~2-4)~(1/2)(x≤-2).(1)求f~(-1)(x);(2)设a_1=1,a_n=f~(-1)(a_(n-1))(n≥2,n∈N),求a_n;(3)求sum from i=1 to n 1/(a_1+a_i+1)的值该题作为函数与数列的综合题在教学中广为流传,通常简解如下解:(1)函数,f(x)=(x~2-4)~(1/2)(定义域为x≤—2,值域为y≥0)的反函数为f~(-1)(x)=-(x~2+4)~(1/2)(定义域为x≥0,值域为y≤-2) (2)∵a_1=1,a_n=f~(-1)(a_(n-1))由迭代法得:a_n=-(a_(n-1)~2+4)~(1/2)=-(a_(n-2)~2+2×4)~(1/2)=…=-(a_1~2+(n-1)4)~(1/2)=-(4n-3)~(1/2)(亦可由a_n~2=a_(n-1)~2+4,n=2,3,…n,累加而得) (3) 注意到 a_n~2-a_(n-1)~2=4,  相似文献   

10.
1 问题已知数阵 A_0={a_(ij(0))={a_(ij)},a_(ij)∈C.设A_n={a_(ij)(n)):a_(ij)(n)=a_(ij)(n-1)+a_(i,j+1)(n-1)+a_(a_(i+1),j)(n-1)+a_(i+1,j+1)(n-1),i,j=1,2,3,…,①则 A_n 叫做 A_0的 n 次迭代数阵.问题在于:已知 A_0,求 A_n 的通项公式.  相似文献   

11.
一、2艺+4之+6“+…+(22,)2 2=了’‘(”+1)(Zn+l)·将n个等式相加,得(n+1)‘一1证明:22+4“+6之+…+(Zn)“ 二22·12+22一22+22一32+… +2 2.n2二4(1“+2“+…+n3)+6(12+2“+…+月2) +4(1+2+…+n)+n. 变形整理,得 4(13+23+33+…+几3)=22(1“+2“+3“+…+n“) 1=4’一百“(”+l)(2,‘+1)一(,+,)4一6·言、(。+l)(2·+,)誉。(。+‘,‘2“+‘,· 1一4’万”’L几+l)一‘几+l)二、1“+32+52+…+(Zn一1)息 1=下叫凡(4忍‘一1)。 J证明:i艺+32+5“+…+(Zn一1)“=(忍+1)略一刀(忍+1)(2九+1) 一2冷(龙+1)一(拜+1)=n“(n+1)之. 13+28+33+…+n3=〔…  相似文献   

12.
[定理] sum from k=1 to n (a_mk~m+a_(m-1)k~(m-1)+…+a_1k+a_0)=A_(m+1)n~(m+1)+(a_m+A_m)n~m+…+(a_1+A_1)n。其中,系数A_(m+1),A_m,…,A_1由方程组  相似文献   

13.
本文拟将一代数定理的应用介绍如下,供同学们参考 [定理] 已知a_0+a_1+a_2+……+a_(n-1)+a_n=0,求证:一元n次方程a_0x~n+a_1x~(n-1)+a_2x~(n-2)+……+a_(n-1)x+a_n=0(a_0≠0)有一个根为1。证明:(略)下面谈一下这个定理的应用: [例1] 已知方程(m+1)(x~2-x)=(m-1)·(x-1)的两根绝对值相等而符号相反,求m的值。解:原方程变形为(m+1)x~2-2mx+(m-1)=0,由题设知m+1≠0,但m+1-2m+m-1=0,∴此方程有一个根为1。而原方程两根绝对值相等、符  相似文献   

14.
珠联璧合     
1.问题:数列{a_n}中,已知a1=0a2=1,a_(n+1)=n(a_n+a_(n-1),求通项a_n 2.问题背景:n个元素m1,m2,…,m_n重新排列不排在原来位置的排列种数记为a_n,求a_n.1 2 3 4 5… n十1个元素重新排列不排在原来位置的排法为a_(n+1). a1不在1号位,则a1有n种排法. a2排在1号位,其它n-1个元素不排在原来位置的排法有a_(n-1)种. a2不排在1号位,则除a2的其它n个元素不排在原来位置的排法有a_n种. 所以a_(n+1)=n(a_n+a_(n-1),显然a1=0,a2=1.  相似文献   

15.
<正>数列的通项公式是高考重点考查的知识点之一,求数列通项公式的方法也很多,在具体的问题中选择最适当的方法来解决是重中之重。本文主要介绍用特征根法求数列通项公式。若常系数齐次线性递归数列的递归关系为:a_(n+k)=c_1a_(n+k-1_+c_2a_(n+k-2)+…+c_ka_n,则称方程xk=c_1xk=c_1x(k-1)+c_2x(k-1)+c_2x(k-2)+…+c_k为其特征方程,方程的根称为{a_n}的特征根。定理:如果x_1,x_2是递推关系a_n=  相似文献   

16.
先化简,后求值是求代数式的值的一般方法.但对于求某些条件代数式的值的问题,特别是对于竞赛题,若能灵活地应用已知条件,挖掘隐含条件,巧妙构造算式,则可简化计算过程,从而达到快捷获解之目的.例1若a2+a=1,求a4-3a2+2的值.解:由a2+a=1得a=1-a2.∴原式=(a4-2a2+1)+(1-a2)=(1-a2)2+(1-a2)=a2+a=1.注:这里充分运用了1-a2=a这一降次的隐含条件.例2已知a2+a-1=0,求a3+2a2+3的值.解:由a2+a-1=0得a2+a=1.∴原式=a3+a2+a2+3=a(a2+a)+(1-a)+3=a+(1-a)+3=4.注:这里运用了隐含条件a2+a=1凑配代入而得解.例3已知m+n+k=0,求证:m3+m2k+n2k+n3-mnk=0.证明:…  相似文献   

17.
本文给出任意项级数收敛判定方法:如果级数∑_(n=1) a_n的项添加括号后所成的级数收敛且lim_(n→∞)a_n=0,则该级数收敛.由此获得:设C={a_i|a_i∈Z,i=0,1,…,k},D={a_(2j)|a_(2j)=2r_(2j)+1∈C,r_(2j)∈Z},E={a_(2j+1)|a_(2j+1)=2r_(2j+1)+1∈C,r_(2j+1)∈Z}且|D|=2p+1,|E|=2q,p,q∈Z,则级数∑_(n=1)∞ a_n的项添加括号后所成的级数收敛且lim_(n→∞)a_n=0,则该级数收敛.由此获得:设C={a_i|a_i∈Z,i=0,1,…,k},D={a_(2j)|a_(2j)=2r_(2j)+1∈C,r_(2j)∈Z},E={a_(2j+1)|a_(2j+1)=2r_(2j+1)+1∈C,r_(2j+1)∈Z}且|D|=2p+1,|E|=2q,p,q∈Z,则级数∑_(n=1)sinπ/2(a_0n∞sinπ/2(a_0nk+a_1nk+a_1n(k-1)+…+a_k)/n发散,否则收敛.同时得到:∑_(n=1)(k-1)+…+a_k)/n发散,否则收敛.同时得到:∑_(n=1)sinπ/2n∞sinπ/2n(2s+1)/n收敛,级数∑_(n=1)(2s+1)/n收敛,级数∑_(n=1)sinπ/2n∞sinπ/2n(2s)/n发散,其中s∈N.  相似文献   

18.
高中代数(甲种本)第二册77页上有这样一道习题: 已知数列{a_n}的项满足 a_1=b a_(n+1)=ca_n+d(c≠1),证明这个数列的通项公式是 a_n=(bc~n+(d-b)c~(n-1)-d)/(c-1) 我们把这题推广成: 已知数列{a_n}的项满足 a_1=a a_(n+1)-ba_n=c_0+c_1n+c_2n~2+…+c_mn~m,其中b≠0,求这个数列的通项公式. 这类问题,可以用待定系数法解决.以  相似文献   

19.
数列是中学数学的重要内容之一,有关数列的习题形式多样,解法灵活,除要求较高的分析问题和解决问题的能力之外,还必须具有清晰的概念和比较坚实的基础知识,否则常因概念不清而导致谬误。举例于下: 一、判别数列的类型不确切。例1 已知数列{a_n}满足a_1=1,a_2=7,且a_n=2a_(n-1)+3a_(n-2)(n≥3) ①求a_n。错解:将2a_(n-1)拆成3a_(n-1)—a_(n-1)后,①式可化为 a_n+a_(n-1)=3(a_(n-1)+a_(n-2),从而 a_n+a_(n-1)/a_(n-1)+a_(n-2)=3  相似文献   

20.
让我们先来看两道例题:例1已知数列{a n}:6,9,14,23,40试求该数列的通项公式.解记an+1?an=bn,则{b n}:3,5,9,17记bn+1?bn=cn,则{c n}:2,4,8.∴cn=2n.bn=b1+(b2?b1)+(b3?b2)++(b n?bn?1)=b1+c1+c2++cn?1=3+2+22++2n?1=2n+1,an=a1+b1+b2++bn?1=6+(2+1)+(22+1)++(2n?1+1)=6+(2+22++2n?1)+(n?1)=2n+n+3,∴数列{a n}的通项公式为:an=2n+n+3.例2已知数列{a n}:1,7,16,30,53,93,166试求该数列的通项公式.类似于例1可得数列{a n}的通项公式为:an=2n+n2/2+5n/2?4.总结例1与例2,若将原数列{a n}算作“第1阶”,则例1中的数列{a n}是在“逐差”至“第3阶…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号