首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>一天,一个学生拿一道题来问我:问题1已知命题p:方程x2+mx+1=0有两个不等的负实数根;命题q:方程4x2+4 m(-2)x+1=0无实数根.若"p或q"为真命题,"p且q"为假命题,求m的取值范围.我问,你有什么问题?他说,我这个题目能够做出来,但我有个疑问,题中的p、q是命题吗?教材上说"命题是能够判断真假的语句",显然  相似文献   

2.
在什么条件下,一元二次方程的根才是整数呢?下面几个定理部分回答了这个问题. 定理1 若首项系数为1的整系数方程x2+px+q=0(p、q为整数)的判别式Δ=p2-4q为一个完全平方数,则方程的根为整数.反之,亦成立. 这个定理可用反证法来证明,这里从略.只强调一点:对首项系数不  相似文献   

3.
<正>二次函数y=f(x)=ax2+bx+c(a≠0)的图像(抛物线)关于直线x=-b/2a对称.如果有f(p)=f(q),且p≠q,则f(p+q)=c.简证如下:法1 f(p)=f(q),因为对称轴方程为x=-b/2a=(p+q)2,所以,p+q=-b/a.所以f(p+q)=f(-b/a)=a(-  相似文献   

4.
Hlder不等式及Minkow ski不等式是建立L~p空间和l~p空间的理论基础,有了这两个不等式,才能在L~p空间和l~p空间中引出具有普遍意义的范数来。 引理 若p>1,1/p+1/q=1,则对于任意A≥0,B≥0,有下列不等式 AB≤A~p/p+B~q/q (1) 证明 当AB=0时,不等式(1)显然成立。 当AB≠0时,考虑函数φ(x)=x~p/p+1/q-x(x≥0),由于,φ′(x)=x~(p-1),因此φ′(x)在x<1时,小于零,在x>1时,大于零。故φ(x)在x=1达到最小值0。即对任一x≥0,φ(x)≥0。令x=AB~(-p/q),则A~pB~(-q)/p+1/q-AB~(-p/q)≥0,以B~q乘以上式并注意到q-q/p=q(1-1/q)=1,即得(1)式 注1 (1)式只有在A~p=B~q时等号成立。 注2 当p=q=2时,这时(1)变成显然等式AB≤A~2+B~2/2 一、关于H(?)lder不等式 若p>1,1/p+/q=1,则有 1、H(?)lder不等式的级数形式:对于任意p幂收敛复数列{§k},q幂收敛复数列  相似文献   

5.
类型1 an+1=pan+q(p≠1,q≠0)对这种类型一般是用待定系数法构造等比数列.令an+1+λ=p(an+λ),与已知递推式比较,得λ=q/(p-1),从而转化为{an+q/(p-1)}是公比为p的等比数列.  相似文献   

6.
设P,q为正整数,Lucas序列Un+2=PUn+1+q Un,U1=1,U2=p;Vn+2=PVn+1+q Vn,V0=2,V1=p,本文得到系数为Lucas数孪生幂级数定理与几组孪生恒等式.  相似文献   

7.
题目方程 x~2+px+q=0的两根都是非零整数,且 p+a=198,则 p=____.(1992年上海市初中数学竞赛试题)解设 x~2+px+q=0的两个整数根为 x_1、x_2,且 x_1≠  相似文献   

8.
令参数λ,使得{an+1+λ}成公比为p的等比数列,由an+1=pan+q得:an+1+λ=pan+q+λ=p(an+(q+λ)/p).由{an+λ}成等比数列可得:λ=(q+λ)/p,即λ=q/(p-1);即数列{an+q/(p-1)}成首项为a1+q/(p-1)公比为p的等比数列。  相似文献   

9.
先看下面三道题:(1)如果一元二次方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,求实数a的范围.(2)已知p1p2=2(q1+q2),试证方程x2+p1x+q1=0和x2+p2x+q2=0中,至少有一个方程有实根.(3)若一元二次方程x2+ax+b=0,x2+bx+c=0,x2+cx+d=0的系数满足等式:bc+2d=(a-2)(b+c),则三个方程中,至少有一个方程有实根.这几道题属于“至少存在问题”,数学竞赛中常常见到.这类题若从正面考虑,大家认为几个方程中“至少有一个方程有实根”的情况复杂,解答易错.所以有关书刊及资料上介绍的解法都采用的是反证法,其思路是这样的:假定三个…  相似文献   

10.
1.证明2~(1/2)是无理数. 证假设2~(1/2)是有理数p/q其中p、q为互质正整数,,即2~(1/2)=p/q.两边平方可得p~2=2q~2,可见p为偶数,设p=2n,则(2n)~2=2q~2,故q~2=2n~2,从而q也是偶数,所以p、q有公因数2,这与p、q互质矛盾。因此,2~(1/2)必为无理数.  相似文献   

11.
知识点1全等形能够完全重合的两个图形是全等形,能够完全重合的两个多边形是全等多边形.全等形的形状和大小完全相同,只是图形的位置不同.  相似文献   

12.
徐启燕 《中学理科》2004,(10):29-30
处理充分、必要条件问题时 ,首先要分清条件与结论 ,然后才能进行推理和判断 .判断命题的充要条件通常有以下几种方法 .1 定义法根据充分条件和必要条件的定义 ,直接判断 .例 1 P∶x1、x2 是方程x2 5x -6=0的两根 ,q∶x1 x2 =-5,则p是q的什么条件 ?析 :方程x2 x -6=0的两根为x1=1 ,x2=-6,∴x1 x2 =-5,即p q ,但x1=-2 ,x2 =-3 ,满足q ,而不是方程的根 ,而q / p ,故p是q的充分不必要条件 .2 集合法①表示A为B的充分条件∵Ax∈A x∈B .②表示A为B的必要条件因为想要进入B首先要通过A .③A为B的充要条件 (边界重合 )④、⑤A为B的…  相似文献   

13.
韦达定理,即一元二次方程中根与系数的关系,设x2-px+q=0的两个根为x1、x2,则x1+x2=p,x1·x2=q,是初等代数中的重要内容.  相似文献   

14.
李华 《初中生辅导》2012,(29):15-21
一、知识剖析 1.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴. 2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称,这条直线就是对称轴.折叠后重合的点叫做对称点. 3.线段的垂直平分线:经过线段的中点并且垂直于这条线段的直线叫做这条线段的垂直平分线,又称线段的中垂线. 4.轴对称图形与轴对称的区别与联系: (1)区别:轴对称图形研究的是一个具有特殊形状的图形,轴对称研究的是两个全等图形的位置关系;轴对称图形只涉及一个图形,轴对称涉及到两个图形.  相似文献   

15.
逻辑思维贯穿于高中数学的始终,简易逻辑已成为历年高考考查的必考内容,并且试题常以选择题、填空题为主,难度不大,但要求对基本知识、基本技能、基本题型等非常熟练.例1若p:-2相似文献   

16.
文 [1 ]中给出了满足递推关系an+1 =p+ qan( 1 )(其中 p 为非零常数 ,q为正常数 )的数列{an}的通项公式 ,并据此证明了当此数列有两项相等时 ,其必为常数列 .下面我们将取消“p为非零常数 ,q为正常数”这一限制而考虑更广泛的情形 ,得出有两项相等且满足(1)的数列的完全分类 .主要结论是 :定理 1设 (实或复 )数列 {an}满足( 1 )且 a1 =a(≠ 0 ) ,其中 p,q为常数且 q≠ 0 ,方程 x=p+ qx的两根 (称为数列 {an}的特征根 )为 x1 和 x2 ,则当 p2 + 4q≠ 0即 x1 ≠ x2时 ,{an}的通项为an=( a- x2 ) xn1 - ( a- x1 ) xn2( a- x2 ) xn- 1 1 - ( a- x…  相似文献   

17.
一、轴对称和轴对称图形的区别。1.概念不同:轴对称是指两个图形之间,把一个图形沿着某条直线折叠,它能够与另一个图形完全重合;轴对称图形是指一个图形沿着一条直线折叠,直线两旁的部分能够完全重合;  相似文献   

18.
本章是从现实生活中的图形入手,学习轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用,并利用轴对称性探索等腰三角形的T性质.一、知识梳理(一)知识结构(二)要点再现1.轴对称是现实生活中的图形对称的形式之一.2.两个图形成轴对称是图形与图形之间的位置关系;轴对称图形是一个图形的特征,这是两个不同的概念.3.轴对称与轴对称的性质:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称…  相似文献   

19.
“轴对称与轴对称图形”是七年级数学中非常重要的两个概念,初学者由于对其理解不深刻,运用时常常出现许多错误,为此,对这两个概念的区别和联系梳理如下:一、区别1.概念不同轴对称图形是指如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.而轴对称则是指对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成轴对称,这条直线就是对称轴.2.图形的个数不同轴对称图形是说一个具有特殊形状的图形,轴对称是说两个图形的位置关系.3.对称轴的条数不同在轴对称中,只有一条对称轴,而轴对称…  相似文献   

20.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号